Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - [4]

Шрифт
Интервал

Сейчас мой ответ совпадает с тем, который я приводил выше. Если мини-поле уже сыграно, вы можете выбрать любое другое.



Но изначально мой ответ был другим. До тех пор, пока на этом мини-поле остаются пустые клетки, вам необходимо идти туда и делать ход, даже если он лишен смысла.

Это кажется мелочью — всего лишь одна нить в гобелене игры. Но посмотрите, как вся ткань распустится, если потянуть за нее.

Я покажу суть старого правила с помощью дебютной стратегии, которую я окрестил (в порыве скромности) «гамбитом Орлина»:



Иными словами, крестики жертвуют центральным мини-полем ради выигрышной позиции на оставшихся восьми. Я полагал, что эта стратегия весьма крута, пока читатели не указали мне на ее глубочайшую глупость. Гамбит Орлина дает небольшое преимущество, но его легко расширить до гарантированно беспроигрышной стратегии[6]. Вы можете пожертвовать не одним мини-полем, а двумя, завоевав при этом по два крестика на одной прямой на оставшихся семи мини-полях.

Я был смущен и переформулировал старое правило — легкая перенастройка, которая вдохнула в жесткие крестики-нолики новую жизнь.

Новое правило — новая игра.

Именно так развивается математика. Мы выбираем правила и начинаем играть. Когда игра нам приедается, мы меняем правила. Мы вводим новые ограничения и смягчаем старые. Каждое нововведение влечет за собой новые головоломки и вызовы.

По большей части математики не бьются над чужими загадками, а изобретают свои собственные, исследуя, какие ограничения приводят к интересным играм, а какие — к наводящим скуку. В конце концов постоянная смена правил и перескоки от одной игры к другой становятся похожи на отдельную грандиозную нескончаемую игру.

Математика — это логическая игра по изобретению логических игр.

Вся история математики снова и снова иллюстрирует этот тезис. Логические головоломки изобретают, решают и изобретают снова. Например, что произойдет, если я подправлю знакомое уравнение и заменю двойку на другое число: 3, или 5, или 797?



С ума сойти! Я превратил элементарное древнее уравнение, имеющее множество решений в целых числах (например, 3, 4 и 5), в самую досадную задачу, с которой когда-либо сталкивалось человечество, — в великую теорему Ферма. Она тревожила умы математиков около 350 лет, но в 1990-е годы гениальный британец>{2} заперся на чердаке и вышел примерно десять лет спустя, щурясь на солнечный свет, с доказательством, что уравнение не имеет целочисленных решений, если степени неизвестных больше двух[7].



А что произойдет, если я возьму две переменных, скажем x и y, и построю координатную сетку, чтобы посмотреть, как они зависят друг от друга?

Невероятно! Я изобрел координатную плоскость и совершил революцию в математике, наглядно изобразив алгебраические идеи, и поэтому мне платят кучу денег. Будем знакомы: меня зовут Декарт.



Или припомним, что возведение числа в квадрат всегда дает положительную величину. А что, если мы придумаем особое число, которое при возведении в квадрат дает отрицательную величину? И что тогда?

Вот это да! Мы изобрели мнимые числа, открыв возможности для исследования электромагнетизма и взломав математическую истину под названием «основная теорема алгебры»>{3}. Звучит неплохо, можно включить в резюме.

В каждом из этих случаев математики поначалу недооценивали преображающую силу смены правил. Ферма полагал, что его теорема доказывается крайне просто; как выяснилось, он заблуждался, и его сбитые с толку преемники бились над доказательством несколько веков. Идея Декарта о координатной плоскости (которую называют «декартовой системой координат» в его честь) вначале была высказана в приложении к философскому тексту>{4}; впоследствии текст забылся, а идея получила свое развитие. Над мнимыми числами издевались и смеялись несколько веков («настолько же неуловимые, насколько бесполезные», сказал великий итальянский математик Кардано[8]), пока их не признали настоящими и полезными. Кстати, само слово «мнимый»>{5} по отношению к таким числам изначально имело уничижительный смысл, и придумал это поношение не кто иной, как Декарт.

Легко недооценить новаторские идеи, если они родились не в результате серьезных размышлений, а во время игры. Кто мог предположить, что небольшая перемена в правилах (новая степень, новая визуализация, новое число) превратит фантазию в нечто официально признанное?

Не думаю, что математики на том пикнике думали о таких вещах, когда склонились над игрой в жесткие крестики-нолики. Но в этом и не было необходимости. Осознаём мы это или нет, но логическая игра по изобретению логических игр оказывает влияние на всех нас.

Глава 2. Как математику видят школьники?

Увы, эта глава будет краткой и мрачной. Я прошу прощения. Но я слишком занят, чтобы просить прощения даже за другие вещи, например за мои душеразжижающие уроки математики.

Вы понимаете, что я имею в виду. Для множества школьников заняться математикой означает записать карандашом предписанную последовательность действий. Математические символы ничего не символизируют; они просто пляшут по странице, выполняя бестолковые хореографические упражнения.


Еще от автора Бен Орлин
Время переменных. Математический анализ в безумном мире

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения. Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.