Математика для гиков - [2]

Шрифт
Интервал

Математики скажут, что форма капусты романеско самоподобна. Если вы увеличите изображение капусты и внимательно присмотритесь к деталям, то увидите то же самое, что бы вы увидели, не увеличивая это изображение. При самоподобии объект выглядит одинаково, несмотря на его масштаб. Это также отличительная черта фракталов, которые изучал математик Бенуа Мандельброт, благодаря которому они получили широкую известность. Его книга «Фрактальная геометрия природы» (1982) помогла представить этот вид объектов миру. (Эта книга, по сути, стала переработкой его книги «Фракталы: форма, случайность и размерность» 1977 года.) Мандельброт выявил множество форм в природе, которые имели самоподобную структуру: изрезанная береговая линия, облака и изысканный узор жилок в листьях. Кажется, что природа любит самоподобные формы; чем больше вы будете их искать, тем больше вы их найдете.


Бенуа Мандельброт также изучал то, что сейчас называется множеством Мандельброта, это множество комплексных чисел в последовательности, которая не уходит в бесконечность. Когда вы изображаете множество Мандельброта на графике, оно приобретает округлую выпуклую форму, которая интересна математикам отчасти оттого, что чем больше вы увеличиваете какую-то часть, тем больше деталей вы видите. На самом деле, когда вы увеличиваете изображение, вы вновь и вновь начинаете видеть исходную форму множества Мандельброта.


1.2. Измеряем длину береговой линии: не так просто, как кажется

Математическое понятие: система измерений

Что может быть проще измерения длины чего-либо? Если мы, например, хотим узнать длину стола, то для этого можно использовать рулетку. Если мы хотим узнать дистанцию от одного города до другого, мы можем записать показания одометра в машине. Или можно взять карту и с помощью линейки высчитать дистанцию между двумя городами, а потом, используя масштаб карты, перевести сантиметры в километры или дюймы в мили.



Но вот измерение береговой линии – это более сложный процесс. Оказывается, что длина каждой отдельно взятой береговой линии зависит от длины устройства, которое используется для ее измерения. Как правило, чем меньше измерительное устройство, тем длиннее береговая линия. Теоретически, по мере того, как измерительное устройство становится все меньше и меньше, длина береговой линии увеличивается до бесконечности. Как такое возможно?



Как и многие другие формы в природе, береговые линии имеют изрезанную и неправильную форму. Таким образом, чем ближе вы рассматриваете ее, тем больше деталей замечаете. Например, если бы вы смотрели на Северную Америку с высоты спутника, то береговая линия казалась бы относительно гладкой, без особых отличительных черт. Но если вы сами идете по береговой линии, помимо всего прочего, вы замечаете узкие заливы, небольшие выступы берега и камни. А если вы опуститесь на колени, то сможете разглядеть каждый камешек и листик. Если вы воспользуетесь микроскопом, то ваши измерения дойдут и до молекул. На каждом новом уровне детализации ваши единицы измерения уменьшаются от километра до метра, от сантиметра до микрометра; и каждый раз территория измерения увеличивается. Если бы вам надо было измерить береговую линию Великобритании, используя палку длиной 100 км (около 62 миль), то конечная длина составила бы более 2800 км (примерно 1700 миль). Но если бы вы уменьшили палку до 50 км (31 миля), новая длина береговой линии составила бы 3400 км (2100 миль).

Парадокс береговых линий показывает, что хотя математика может предоставить измерения с необыкновенной точностью, она также может показать неопределенность, свойственную самой структуре реальности.


Побережье Канады – самая длинная в мире береговая линия, примерно 152 100 миль. Но вы только представьте, насколько она была бы длиннее, если бы ее измерили рулеткой.


1.3. Пузыри забавны и эффективны

Математическое понятие: объем

Представьте солнечный день в парке в самый разгар лета. Вполне возможно, там есть ребенок, который пускает мыльные пузыри. Неважно, пускаете ли вы их с помощью пластиковой палочки или большого обруча, сделанного из соломинок и веревки, мыльные пузыри – с их мерцающей поверхностью и шаровидной формой – это воздушное воплощение веселья.



Они также являются кладезем для математических размышлений. Математики уже давно знают, что если вы хотите поместить определенный объем воздуха в форму с наименьшей площадью поверхности, то эта форма – шар. А что, если вы хотите поместить два объема воздуха? Есть подозрение, что лучшим способом будет использовать двойной пузырь. Двойной пузырь – это форма, когда два пузыря соединены. (Вы, возможно, видели его, когда использовали пену для ванн.) Обычно пузыри отделены плоской мембраной; если один пузырь больше другого, то мембрана немного выпирает в сторону большего пузыря. В 19 году математики Джоэл Хасс, Майкл Хатчингс и Роджер Щлафли опубликовали статью, в которой доказали, что форма двойного пузыря – это наиболее эффективная форма для заключения двух одинаковых объемов воздуха. Но что, если два объема воздуха разные? Является ли двойной пузырь и в этом случае лучшим способом заключения воздуха в форму с наименьшей площадью поверхности?


Рекомендуем почитать
Толкин и Великая война. На пороге Средиземья

Книга Дж. Гарта «Толкин и Великая война» вдохновлена давней любовью автора к произведениям Дж. Р. Р. Толкина в сочетании с интересом к Первой мировой войне. Показывая становление Толкина как писателя и мифотворца, Гарт воспроизводит события исторической битвы на Сомме: кровопролитные сражения и жестокую повседневность войны, жертвой которой стало поколение Толкина и его ближайшие друзья – вдохновенные талантливые интеллектуалы, мечтавшие изменить мир. Автор использовал материалы из неизданных личных архивов, а также послужной список Толкина и другие уникальные документы военного времени.


Детство в европейских автобиографиях: от Античности до Нового времени. Антология

Содержание антологии составляют переводы автобиографических текстов, снабженные комментариями об их авторах. Некоторые из этих авторов хорошо известны читателям (Аврелий Августин, Мишель Монтень, Жан-Жак Руссо), но с большинством из них читатели встретятся впервые. Книга включает также введение, анализирующее «автобиографический поворот» в истории детства, вводные статьи к каждой из частей, рассматривающие особенности рассказов о детстве в разные эпохи, и краткое заключение, в котором отмечается появление принципиально новых представлений о детстве в начале XIX века.


Все в прошлом

Прошлое, как известно, изучают историки. А тем, какую роль прошлое играет в настоящем, занимается публичная история – молодая научная дисциплина, бурно развивающаяся в последние несколько десятилетий. Из чего складываются наши представления о прошлом, как на них влияют современное искусство и массовая культура, что делают с прошлым государственные праздники и популярные сериалы, как оно представлено в литературе и компьютерных играх – публичная история ищет ответы на эти вопросы, чтобы лучше понимать, как устроен наш мир и мы сами. «Всё в прошлом» – первая коллективная монография по публичной истории на русском языке.


Алхимии манящий свет

Очерк, посвящённый алхимии, её теоретическим положениям и некоторым легендам, связанным с развитием алхимии в России. Все приведённые в статье факты — соответствуют действительности, но их толкование порой весьма фантастично.


Несостоявшийся визит к богу Джаганнатху

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мастерская сознания

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.