Машины создания - [27]
Позади коробки находится устройство, которое читает ленту и обеспечивает механические сигналы, которые переключают движения манипулятора и смену инструментов. Перед рукой находится незаконченная структура. Конвейеры подносят молекулы к ассемблерной системе. Некоторые поставляют энергию для двигателей, которые передвигают считывающее устройство для ленты и манипуляторы, другие обеспечивают группы атомов, занимающиеся сборкой. Атом за атомом (группа за группой), манипулятор передвигает части каждую на своё место, как указывается лентой; химические реакции соединяют их в связанную структуру.
Эти ассемблеры будут работать быстро. Быстрый фермент, такой как углеродная ангидраза или кетостероидная изомераза, может обрабатывать почти миллион молекул в секунду, даже без конвейеров и механизмов, приводимых в движение энергией, чтобы быстро поставить новую молекулу на место как только освобождается предыдущая. Может показаться слишком сильным ожидать от ассемблера, что он будет захватывать молекулу, перемещать её и втискивать на место лишь за миллионную секунды. Но маленькие объекты могут двигаться туда-сюда очень быстро. Человек может поднять и опустить руку несколько раз в секунду, пальцы могут постукивать по чему-нибудь быстрее, муха способна махать своими крылышками достаточно быстро, чтобы жужжать, а комар создаёт невыносимый писк. Насекомые могут махать своими крыльями примерно в тысячу раз быстрее, чем люди своими руками, потому что крылья насекомого примерно в тысячу раз короче.
Манипулятор ассемблера будет приблизительно пятьдесят миллионов раз короче, чем человеческая рука, и поэтому (как это получается) будет способен двигаться туда-сюда приблизительно в пятьдесят миллионов раз быстрее. Для манипулятора ассемблера, двигаться всего лишь миллион раз в секунду было бы подобно человеческой руке двигаться около одного раз в минуту: очень медленно. Так что это выглядит очень разумной целью.
Скорость копирования будет зависеть также от общего размера системы, которая должна быть построена. Ассемблеры не будут копироваться сами по себе; им будут нужны материалы и энергия, а также инструкции о том, как их использовать. Поставлять материалы и энергию могут обычные химические вещества, но должны быть в наличии наномашины, чтобы их обрабатывать. Бугристые полимерные молекулы могут кодировать информацию подобно перфоленте, но должно иметься устройство чтения, чтобы переводить комбинацию бугорков в характер движения манипулятора. Вместе эти части образуют самое главное в репликаторе: лента поставляет инструкции для сборки копии ассемблера, устройства чтения и других наномашин, а также самой ленты.
Разумная конструкция этого вида репликаторов вероятно будет включать несколько ассемблерных манипуляторов и еще несколько манипуляторов для удержания и перемещения объектов работы. Каждый из этих манипуляторов – это по одному миллиону атомов или около того. Другие части – устройства чтения ленты, химические процессоры и т. д. – могут быть такие же сложные как ассемблеры. В конце концов гибкая система копирования вероятно будет включать простой компьютер; следуя механическому подходу, упомянутому в Главе 1, это добавит порядка 100 миллионов атомов. Все части вместе взятые будут составлять менее чем 150 миллионов атомов. Предположим даже что это будет один миллиард, чтобы оставить широкий допуск для ошибки. Не будем принимать во внимание дополнительные способности дополнительных манипуляторов ассемблера, оставляя ещё больший допуск. Работая со скоростью миллион атомов в секунду, система всё равно скопирует себя за тысячу секунд или немногим более чем за пятнадцать минут – это примерно то время, за которое бактерия воспроизводит себя при хороших условиях.
Представьте себе такой репликатор, плавающий в бутылке с химическими веществами, и производящий копии себя. Он строит одну копию за одну тысячу секунд, тридцать шесть за десять часов. Через неделю, он сделает достаточно копий, чтобы заполнить объем человеческой клетки. За столетие, он сделает достаточно, чтобы покрыть небольшое пятнышко. Если бы это было всё, что могли делать репликаторы, мы бы возможно спокойно могли бы на них не обращать внимания.
Однако каждая копия будет строить ещё большее количество копий. Значит первый репликатор соберёт копию за одну тысячу секунд, дальше два репликатора построят еще два за следующую тысячу секунд, четыре построят ещё четыре, а восемь построят ещё восемь. В конце десяти часов будет иметься не просто тридцать два новых репликатора, а более 68 миллиардов. Менее чем за день одни бы весили тонну; менее чем за два дня одни бы стали весить больше, чем Земля; ещё через четыре дня одни бы превысили по массе Солнце и все планеты вместе взятые – если бутылка с химическими веществами не опустеет до этого момента.
Постоянное удвоение означает экспоненциальный рост. Репликаторы умножаются по экспоненте если нет ограничений, таких как недостаток места или ресурсов. Бактерии это делают, и примерно с той же самой скоростью как репликаторы, описанные только что. Люди воспроизводятся намного более медленно, однако если им дать достаточно времени, они также могли бы превзойти любой конечный источник ресурсов. Беспокойство о росте населения никогда не потеряет своей важности. Забота о том, как контролировать новые быстрые репликаторы, скоро станет действительно важной.
Эрик Дрекслер — известный американский учёный, «отец нанотехнологий», инженер, известный популяризатор нанотехнологий. Автор концепции нанотехнологического механосинтеза, первый теоретик создания молекулярных нанороботов, концепции «серой слизи». Книга Эрика Дрекслера (1991) — попытка рассказать о том, что такое нанотехнологии, почему они изменят наш мир и когда ждать их появления.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.