Маленькая книга о большой теории струн - [42]

Шрифт
Интервал

Четырёхмерная гравитация — это великолепно. Это именно то, что описывает общая теория относительности. А вот ответ на вопрос, является ли получившаяся теория «теорией всего», зависит от того, насколько хорошо получившаяся калибровочная теория предсказывает поведение субатомных частиц, которые мы наблюдаем в экспериментах на ускорителях. Чтобы лучше разобраться в калибровочной теории, вспомним, что в предыдущей главе мы описывали калибровочную симметрию квантовой хромодинамики в терминах трёх цветов: красного, зелёного и синего. Теория, являющаяся наиболее перспективным кандидатом на роль теории всего: кварков, глюонов, электронов, нейтрино и прочих частиц, — содержит как минимум пять цветов. Есть несколько способов «прикрутить» эти пять цветов к конструкции струнной теории. Мы не способны экспериментально зафиксировать именно такое количество цветов, но существует нечто, что может помочь нам отличить два дополнительных цвета от трёх известных. Это что-то может быть похоже, например, на бозон Хиггса, но есть и другие идеи. Чтобы представить, откуда могут взяться именно пять цветов, перечислим известные нам фундаментальные частицы, являющиеся фермионами. Их три: кварки, электроны и нейтрино. Кварки могут иметь три различных цвета, а электрон и нейтрино только по одному. Три плюс один плюс один будет пять. Вот видите: всё очень просто.

После того как поднятая строителями струнных конструкций пыль оседает, оказывается, что получившиеся теории прекрасно согласуются с экспериментами. Как правило, эти теории требуют существования суперсимметрии и содержат не один бозон Хиггса, а два и в довесок к нему ещё целый ряд частиц, масса которых сопоставима с массой бозона Хиггса. Также они предсказывают наличие очень малой массы у нейтрино и включают гравитацию в том виде, как её описывает общая теория относительности. В общем, всё это весьма впечатляет. Ведь и правда: ни одна другая теоретическая основа фундаментальной физики не предоставляет нам всех необходимых для приготовления теории ингредиентов и не обеспечивает их правильного взаимодействия. Если струнные теоретики каким-то образом случайно попали в десятку, то теория струн действительно окажется теорией всего, то есть будет описывать все фундаментальные частицы, все взаимодействия между ними и все наблюдаемые типы симметрии. Нам же не останется ничего другого, кроме как решать уравнения этой теории и предсказывать все измеримые в физике элементарных частиц величины: от массы электрона до силы взаимодействия между глюонами.

Тем не менее на пути создания теории всего по-прежнему стоит ряд трудностей. Многое зависит от размера и формы дополнительных измерений. Мы до сих пор не понимаем, почему эти дополнительные измерения не могут быть плоскими. Другими словами, мы не понимаем, что за таинственная сила удерживает наш мир в четырёхмерном состоянии, не давая ему развернуться во всех десяти измерениях. По другой версии, когда-то, на заре существования Вселенной, все измерения были компактифицированы, а потом по какой-то причине только трём из девяти пространственных измерений удалось развернуться в привычный нам мир. Никто не может объяснить, почему дополнительные измерения имеют именно ту форму, которую имеют. Вдобавок ко всему эти измерения, как правило, вялые. Чтобы вы поняли, что я имею в виду, вспомним ещё раз разговор о клубке D0-бран. Он тоже обладает определённой вялостью, каждая D0-брана в нём очень слабо связана с остальными, и практически ничто не мешает ей улететь прочь, а D0-браны снаружи клубка не притягиваются к нему и не отталкиваются от него. Вялость дополнительных измерений означает, что они могут менять свой размер и форму с такой же лёгкостью, как D0-браны могут покидать упомянутый клубок.

Мир теории струн. Обычные четыре измерения (вверху) медленно расходятся с течением времени, обеспечивая расширение Вселенной. Шесть дополнительных измерений (внизу) удерживаются в свёрнутом состоянии обёрнутыми вокруг них бранами, магнитными полями и квантовыми эффектами


На то, чтобы придумать механизм, каким-то образом закрепляющий дополнительные измерения и не дающий им вести себя как попало, было потрачено много времени и усилий струнных теоретиков. Обычно для этого пытаются приспособить браны и магнитные поля. Роль бран представить достаточно просто. Они сродни шпагату, которым перевязывают посылку на почте; трудность состоит в том, что эта посылка мягкая. При попытке связать её она начинает выпирать в разные стороны при затягивании шпагата, и для сохранения формы приходится перевязывать её многократно в разных направлениях. Магнитные поля играют роль плотной упаковочной бумаги, придающей посылке относительную жёсткость.

Итоговая картина мира оказывается весьма сложной. Вероятно, существует множество способов связать дополнительные измерения, предохранив их от развёртывания, но наличие такого большого числа вариантов в некоторых случаях рассматривается как положительная черта модели из-за так называемой проблемы космологической постоянной. Вкратце проблема состоит в следующем: при наличии ненулевой космологической постоянной три пространственных измерения стремятся с течением времени «расходиться». Из астрономических наблюдений мы знаем, что большинство галактик разбегаются в разные стороны, и это интерпретируется как расширение пространства. Существование космологической постоянной приводит к тому, что это расширение становится ускоренным. Наблюдения, выполненные в течение последних десяти лет, свидетельствуют о том, что расширение Вселенной действительно ускоряется со временем, что может быть объяснено существованием очень малой космологической постоянной. Если мы хотим описать мир с позиций теории струн, то нужно придумать механизм, который, с одной стороны, удерживал бы шесть скрытых измерений в свёрнутом состоянии и не давал им двигаться, а с другой — обеспечивал бы трём развёрнутым пространственным измерениям слабую возможность расширяться, причём расширяться с ускорением. Я не стану объяснять здесь, почему это так, но похоже, что число способов связать нужным образом дополнительные измерения чрезвычайно велико. Согласно некоторым струнным теоретикам, такое множество вариантов гарантирует, что среди них найдётся хотя бы один, описывающий наш реальный мир с идеальной точностью, включая существование космологической постоянной именно такой величины, как мы наблюдаем. Наша Вселенная с этой точки зрения является единственной среди множества возможных вселенных, в которой дополнительные измерения связаны именно таким способом. В противном случае разумная жизнь во Вселенной не могла бы существовать. С другой стороны, наше существование является причиной, по которой мы наблюдаем именно такую Вселенную, потому что другие вселенные наблюдать просто некому. Лично я нахожу этот аргумент достаточно убедительным, чтобы признать правильность теории струн.


Еще от автора Стивен Габсер
Маленькая книга о черных дырах

Несмотря на сложность рассматриваемой темы, профессор Принстонского университета Стивен Габсер предлагает емкое, доступное и занимательное введение в эту одну из наиболее обсуждаемых сегодня областей физики. Черные дыры – это реальные объекты, а не просто мысленный эксперимент! Черные дыры исключительно удобны с точки зрения теории, так как математически они гораздо проще большинства астрофизических объектов, например звезд. Странности начинаются, когда выясняется, что черные дыры в действительности не такие уж черные. Что же в действительности находится внутри них? Как можно представить себе падение в черную дыру? А может быть, мы уже падаем в нее и просто еще не знаем об этом?


Рекомендуем почитать
Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Беседы с Исааком Ньютоном

Ни один другой великий человек в истории не был так труден для понимания, как Исаак Ньютон, тридцать лет проживший ученым-отшельником в Кембридже, а затем ставший знаменитым публичным деятелем. Однако Майклу Уайту, биографу Ньютона, удалось его «разговорить»: Уайт разъясняет идеи ученого и воссоздает его портрет так убедительно, как если бы тот действительно рассказал ему о себе в доверительной беседе. С предисловием популярного американского писателя Билла Брайсона, автора «Краткой истории почти всего на свете» и других бестселлеров.* * * «У Ньютона был нелегкий характер, он был часто неприятен и недружелюбен в общении и поэтому имел очень мало друзей.


Как мы едим. Как противостоять вредной еде и научиться питаться правильно

Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.


Советский воинский долг и религия

Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.


Мир после нас. Как не дать планете погибнуть

Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.