Магнитные карты и ПК - [4]
1 Э = 79,618 А/м или 1 А/м = 0,01256 Э.
Учитывая все вышесказанное, приведем несколько примеров, иллюстрирующих величину коэрцитивной силы различных материалов. У наиболее распространенных магнитных покрытий на базе окислов железа эта величина составляет около 300 Э. Что касается магнитомягких материалов (LoCo), в частности, ферритов, из которых изготавливают сердечники записывающих головок, то у них величина Н>с колеблется в диапазоне между 0,004 и 12 Э. Они легко размагничиваются, причем чаще всего самопроизвольно от простого контакта с записанной дорожкой. Магнитотвердые материалы (HiCo), применяемые особенно для изготовления постоянных магнитов, могут иметь напряженность Н>с в пределах от 125 до 40000 Э.
Тем не менее в домашних условиях редко встречаются магниты, напряженность которых превышает 2500 Э. При этом максимальное теоретическое значение напряженности магнитного поля магнитов, изготовленных из феррита бария, высококачественного и тем не менее широко применяемого материала, равно 4650 Э.
Величина Н>су магнитных покрытий типа HiCo, выпускаемых некоторыми изготовителями, может достигать 4000 Э, однако наиболее широко принятое значение составляет 2750 Э.
На основании выше изложенного приходим к следующим выводам:
• даже широкоприменяемые материалы магнитных дорожек относятся к категории магнитотвердых материалов (HiCo), то есть к категории постоянных магнитов;
• дорожку с невысокой напряженностью Н>с(из магнитомягкого материала LoCo) легко стереть при помощи простого контакта с любым намагниченным предметом, например с намагниченной кнопкой или мебельным магнитом и даже с записанной дорожкой HiCo;
• дорожка HiCo не боится близко расположенных к ней слабых обычных магнитов, однако, может быть стерта сильными магнитами, которые можно встретить, скажем, в некоторых электрических двигателях или в громкоговорителях.
Эмпирически дорожку HiCo не трудно распознать по ее насыщенному темному цвету, тогда как дорожки из магнитомягкого материала (LoCo) имеют легкий оттенок ржавчины, что совершенно естественно для окислов железа.
Следует обратить внимание, что встречаются плёнки с покрытием из окислов хрома очень темного цвета, но и аудио- и видеокассеты, использующие этот материал, не принадлежат к типу HiCo. Что касается дорожек, окрашенных с помощью пигментов или покрытых декоративным слоем, то оценить их тип (коэрцитивную силу Н>с) можно только с помощью стирания или записи. Как правило, все манипуляции, описанные в данной книге, проще выполнять с картами типа LoCo, хотя разработанные нами схемы вполне в состоянии работать с дорожками, коэрцитивная сила которых достигает 2750 Э.
Двумя чрезвычайно важными характеристиками любой магнитной головки считаются ширина и высота воздушного зазора. При этом ширина фиксирует длину дорожки, которая может быть намагничена за данный период времени, а следовательно, при определенной скорости прохождения она определяет возможную плотность записи.
Хорошо известно из техники аудиозаписи, насколько узок должен быть воздушный зазор головки (рис. 1.9), чтобы обеспечить необходимую для нормального качества воспроизведения ширину полосы пропускания, и насколько низкой должна быть скорость движения ленты для обеспечения стандартной длительности записи.
Рис 1.9.Вид воздушного зазора магнитной головки через микроскоп (увеличено в 50 раз)
В табл. 1.1 приведены характеристики воздушного зазора, принятые для наиболее широко распространенных приложений.
Таблица 1.1.Характеристики ширины воздушного зазора головок для различных приложений
Однако приведенные выше цифры не должны рассматриваться как обязательные величины. Так, для схем, описанных в данной книге, нам удалось получить хорошие результаты записи с помощью магнитных головок, воздушный зазор которых достигал 120 мкм (то есть 0,12 мм), а для считывания использовались обыкновенные головки от кассетного магнитофона. Что касается высоты воздушного зазора, то она находится в прямой зависимости от ширины записываемой или считываемой дорожки.
Несмотря на то что логично задавать высоту воздушною зазора записывающей (или универсальной записывающей/считывающей) головки практически равной ширине дорожке, обычно используют считывающие головки с зазором существенно меньшей высоты и выровненным приблизительно по центру дорожки. И хотя в таком случае имеет место некоторое уменьшение амплитуды восстанавливаемого сигнала, зато значительно расширяется допуск на позиционирование и практически исчезает риск, связанный с перескакиванием на соседние дорожки. Не говоря уже о стандартах, можем констатировать, что ширина большинства дорожек магнитных билетов и карт близка к 2,8 мм, хотя можно часто встретить и более широкие дорожки (например, у билетов в метро).
Рекомендуемая высота воздушного зазора для считывающей головки составляет 1–2 мм, что сопоставимо с величиной в 1,4 мм монофонических головок кассетных магнитофонов (использующих полосу шириной 3,8 мм). Поэтому их можно прекрасно использовать, для создания экспериментальных считывающих устройств магнитных карт, естественно, при условии, что с них снят направляющий ограничитель. Что касается монофонических головок двухдорожечных катушечных магнитофонов (лента 6,3 мм), то у них воздушный зазор составляет 2,3 мм, что немного превышает ширину дорожки распространенных магнитных карт. Если производить предварительное стирание карт с помощью постоянного магнита, то такие головки можно вполне использовать для записи. Следует воздерживаться от применения стереофонических головок, расположение и высота двух воздушных зазоров которых сильно отличаются от аналогичных параметров головок двухдорожечных считывающих устройств для карт.
Книга Патрика Гёлля «Как превратить персональный компьютер в измерительный комплекс» позволяет создать на базе IBM PC-совместимого персонального компьютера систему сбора и обработки информации о различных физических процессах. Тем самым ПК превращается в мощный измерительный прибор. Область применения виртуального измерительного комплекса шире, чем у обычного измерительного прибора, поскольку виртуальный комплекс можно перепрограммировать и оптимизировать для конкретных задач.В книге рассказывается о создании системы сбора и обработки данных, состоящей из датчиков физических величин (тока, давления, температуры и т. д.), интерфейсного устройства (как правило, аналого-цифрового преобразователя) и программных средств, позволяющих обрабатывать и интерпретировать собранную информацию.
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.
Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.
В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.
В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.
В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания различных приборов. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга радиолюбителей.
В данном выпуске приведены краткие описания и принципиальные схемы конструкций, ранее опубликованных в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.
Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей.
В этой книге приведены краткие описания и принципиальные схемы конструкций, ранее опубликованные в радиолюбительской литературе, которых вполне достаточно для сборки и налаживания каждой схемы. Учтены интересы начинающих радиолюбителей самого разного возраста.Для широкого круга читателей.