Магнит за три тысячелетия - [37]

Шрифт
Интервал

Такие "синтетические" сверхпроводники обладают по крайней мере двумя

преимуществами: во-первых, при уменьшении размеров сверхпроводника улучшаются

его сверхпроводящие свойства; во-вторых, снижаются потери на вихревые токи в

несверхпроводящих областях синтетического сверхпроводника…

Если вспомнить Камерлинг-Оннеса, то, будучи скорее инженером, чем чистым

физиком, он уже в 1913 г. решил построить сверхпроводящий электромагнит на 10 Тл,

не потребляющий энергии. Поскольку, рассуждал Камерлинг-Оннес, сопротивление

сверхпроводника равно нулю, ток в сверхпроводящем кольце будет циркулировать

вечно, не затухая. Всякий ток, как известно, создает магнитное поле. Так почему

бы не сделать из сверхпроводящей проволоки мощный электромагнит, не нуждающийся

в питании энергией? Это было бы революцией в электротехнике, и человечество

сэкономило бы миллионы киловатт электроэнергии, растрачиваемой понапрасну не

только в обмотках магнитов, но и в обмотках электрических машин и

трансформаторов. Наконец, можно было бы передавать электроэнергию по

сверхпроводящим линиям передачи без потерь.

К сожалению, мечте Камерлинг-Оннеса о сверхпроводящем соленоиде на 10 Тл не

суждено было сбыться по крайней мере при его жизни. Как только Камерлинг-Оннес

пробовал пропускать по сверхпроводнику значительный ток, сверхпроводимость

исчезала. Вскоре оказалось, что и слабое магнитное поле (индукция самое большее

в несколько сотых долей тесла) также уничтожает сверхпроводимость. Поскольку

такие слабые поля можно было гораздо проще получить с помощью постоянных

магнитов, реализацией идеи создания сверхпроводящих магнитов никто тогда

серьезно не занялся. Это довольно грустное открытие сделало с того времени

разговоры о сверхпроводящих магнитах беспредметными.

Надежды на постройку мощных сверхпроводящих магнитов возродились почти через

двадцать лет, в начале 30-х годов, когда голландские физики Де Гааз и Вуугд,

преемники Камерлинг-Оннеса по Лейденской лаборатории (Камерлинг-Оннес умер в

1926 г., так и не дожив до начала практического использования своего открытия),

установили, что сплав свинца с висмутом остается сверхпроводящим в магнитных

полях, превышающих 1,5 Тл. Это открытие давало возможность строить

сверхпроводящие магниты по крайней мере с таким полем. Однако эти магниты так

никто и не построил. Известный физик Кеезом, бывший в то время директором

Лейденской лаборатории, объявил, что максимальные токи, которые при наличии

магнитного поля выключают сверхпроводимость в сплаве свинца с висмутом, ничтожно

малы. Приговор был вынесен.

В истории сверхпроводящих магнитов произошло, быть может, самое драматическое

событие. Впоследствии оказалось, что Кеезом сделал то, чего не имел права

делать: он экстраполировал данные, полученные им в слабых полях, на область

сильных полей. К несчастью, Кеезом был слишком авторитетен. Едва узнав о его

результатах, физики оставили надежду построить сверхпроводящий магнит и занялись

другими проблемами. Между тем в настоящее время известно, что критический ток

для сплава свинец-висмут в полях до 2 Тл достаточно высок для того, чтобы

создать довольно мощные сверхпроводящие магниты. Авторитет Кеезома стоил физике

очень дорого: постройка сверхпроводящих магнитов была отложена почти на 30 лет.

Лишь после того, как в 1961 г. Кунцлер и его сотрудники объявили, что кусочек

проволоки из сплава ниобия с оловом (Nb3Sn) оставался сверхпроводящим в поле 8,8

Тл, даже в том случае, когда одновременно по этой проволоке пропускали ток

плотностью 1000 А/мм2, началась новая эра в истории сверхпроводимости.

Свойства вновь открытых сверхпроводников делали реальными планы их использования

в технике. Сверхпроводимость начала как бы вторую жизнь, но теперь уже не в

качестве любопытного лабораторного феномена, а как явление, открывающее перед

инженерной практикой весьма серьезные перспективы. Но и здесь оказались свои

трудности.

Если все сложилось так удачно, то спрашивается, почему традиционные

мамонтоподобные магниты еще не вышли из употребления? Почему до сих пор

сверхпроводящие магниты не завоевали принадлежащего им по праву места?

Пожалуй, в первую очередь это объясняется тем, что сверхпроводники с хорошими

свойствами оказались очень капризными. Обращение с ними потребовало от ученых

поиска новых технологических решений, новых представлений о природе

сверхпроводимости. Сейчас уже созданы сверхпроводящие электротехнические

материалы, которые можно успешно использовать в электромагнитах. Среди них есть,

например, такие сплавы, как ниобий-цирконий-титан и ниобий-титан. Они хорошо

поддаются обработке и из них сравнительно легко получить проволоку. Злые языки,

правда, подшучивают, что эта проволока дороговата, так как ее пока что

изготовляют сами ученые. Но производство сверхпроводящей проволоки уже налажено

на заводах, и стоимость ее неуклонно снижается.

Однако наиболее перспективные сверхпроводящие материалы (сплавы ниобий-олово и

ванадий-галлий) чрезвычайно хрупки (например, сплав ванадий-галлий легко

растирается в порошок пальцами). Поэтому такие соединения приходится упаковывать

в гибкие трубки или наносить на гибкую подложку. Даже такая сложная технология


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.