Магнит за три тысячелетия - [33]

Шрифт
Интервал

немецкие физики Мейснер и Оксенфельд обнаружили, что сверхпроводники — идеальные

диамагнетики. Что это означает?

Мы постоянно находимся в магнитном поле Земли. Силовыми линиями этого поля

пронизываются все предметы и существа на Земле. Если на пути силовых линий

попадается какой-нибудь ферромагнетик, например, кусок железа, то в этом куске

магнитные линии как бы сгущаются. Если же на пути силовой линии встретится

диамагнетик, в нем, наоборот, создается разрежение, вакуум силовых линий. В

сверхпроводник магнитные силовые линии вообще не проникают. Другими словами,

сверхпроводник — абсолютный диамагнетик. Внутренняя область сверхпроводника

идеально экранирована от внешних магнитных полей токами, протекающими в тонком

поверхностном слое сверхпроводника. В этот слой проникает и магнитное поле,

вследствие чего его глубину называют глубиной проникновения и обозначают буквой

K. Диамагнетизмом сверхпроводников можно воспользоваться, например, для того,

чтобы придать силовым линиям магнитного поля заданную конфигурацию. Поле будет

обходить сверхпроводник, а силовые линии принимать очертания, повторяющие контур

сверхпроводника.

Сверхпроводник существенно отличается от идеального проводника с сопротивлением,

равным нулю. В идеальный проводник поле может проникать. Наоборот, никакими

способами нельзя заставить магнитное поле проникнуть внутрь сверхпроводника!

Впрочем, один способ есть: при достижении магнитным полем в какой-либо точке

сверхпроводника значения, превышающего некоторое критическое значение,

сверхпроводник в этой точке выходит из сверхпроводящего состояния. Критические

магнитные поля чистых металлов малы: они не превышают сотых долей тесла.

Ток, протекающий по сверхпроводнику, при превышении им критического значения или

критической плотности также может вызывать потерю сверхпроводимости. Значение

этого тока в чистых сверхпроводниках связано с критическим магнитным полем так

называемым правилом Сильсби: сверхпроводимость уничтожается таким током в

проводнике, который создает на поверхности сверхпроводника поле, равное

критическому. Значение поля на поверхности проводника можно установить,

пользуясь законом полного тока.

У каждого сверхпроводника есть также своя критическая температура, т. е.

температура, выше которой он скачком теряет сверхпроводящие свойства. Эта

температура весьма мала.

На критическую температуру влияют, хотя и слабо, механические напряжения в

образце. Как правило (однако, не всегда), увеличение механических напряжений в

образце влечет за собой повышение критической температуры. Это можно установить

лишь с помощью весьма чувствительных методов.

Аналогичная зависимость существует между механическим напряжением и критическим

магнитным полем. Было показано, в частности, что критическое поле образца олова

при 2 К, составляющее 0,021 Тл, повысилось до 1,5 Тл, после того как в олове

были искусственно созданы механические напряжения.

Уменьшение размеров испытуемого образца примерно до 1 мкм существенно изменяет

свойства сверхпроводника. Такой образец уже не будет диамагнитным, а его

критическое поле и ток сильно возрастут.

Уменьшая толщину образца, можно увеличить его критическое поле в несколько сот

раз. У сверхпроводящей свинцовой пленки толщиной 20 А критическое поле равно 40

Тл. Плотность критического тока в тонких сверхпроводящих пленках также сильно

возрастает.

В слоях толщиной около 100 А плотность тока достигает 107…108 А/см2.

При увеличении частоты магнитного поля или тока сверхпроводник постепенно

начинает приобретать сопротивление. Однако при частоте вплоть до 107 Гц оно еще

практически равно нулю.

Как показал американский ученый Купер, электроны в сверхпроводящем состоянии

образуют пары. Образование этих пар становится возможным, когда взаимодействие

электронов проводимости, имеющих антипараллельные спины (грубо говоря,

вращающиеся в разные стороны), с решеткой приводит к возникновению между ними

сил притяжения, преодолевающих силы электрического отталкивания.

На основании предположения Купера были разработаны теория сверхпроводимости БКШ,

названная по фамилиям авторов Дж. Бардина, Купера, Шриффера, и теория

Н.Н.Боголюбова.

На разрыв куперовских пар требуется затратить некоторую энергию. В результате

этого энергия сверхпроводящих электронов на некоторое значение меньше энергии

нормальных электронов. Эту разницу называют энергетической щелью. Это так

называемый фотонный механизм образования куперовских пар. Расчеты показывают,

что такой механизм может обеспечить сверхпроводимость при температурах, ни в

коем случае не превышающих 50 К. Конечно, даже эта температура не очень удобна

для работы, но ее достичь пока не удалось. Рекорд перехода в сверхпроводящее

состояние у сплава ниобия с германием (24 К) продержался почти 10 лет.

А не может ли существовать иных механизмов, приводящих к образованию электронных

пар? В 1964 г. американец В.Литтл предположил существование механизма, при

котором электроны могли бы взаимодействовать, индуцируя электрический заряд на

длинных органических молекулах, В то же время академик В.А.Гинзбург теоретически

открыл еще один так называемый экситонный механизм образования куперовских пар.


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Рекомендуем почитать
Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.