Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез - [40]

Шрифт
Интервал

Максвелл полностью предсказал новое явление: небольшой электрический ток можно измерить в изоляторах и даже в вакуумном пространстве. Этот новый тип тока появится, если электрическое поле будет изменяться. Ученый назвал его током смещения.


Счастлив тот, кто может признать в своей нынешней работе то, что связано с работой его жизни, а также с работой вечности.

Джеймс Клерк Максвелл


При введении данного понятия в уравнения все приобретало чудесный вид. И все-таки чего-то не хватало. Любой упругий материал имеет способность передавать волновое движение, как это происходит с водой в пруду, когда бросают камень. В модели Максвелла мельчайшее возмущение в одном столбике «подушечек» привело бы к колебанию смежных ячеек, что вызвало бы возмущение в магнитном поле вдоль оси вращения ячеек. Что это означало? Что любое возмущение в электрическом поле вызывает подобное возмущение в магнитном поле, и наоборот. Волны, вызванные любым типом возмущения в одном из полей, передаются на оба поля: мы находимся перед электромагнитными волнами. Более того, это поперечные волны, то есть колебание наблюдается в направлении, перпендикулярном распространению возмущения.

Есть ли какой-нибудь вид известной поперечной волны, которая связана с электромагнитными явлениями? Конечно, есть!

Это свет! Максвелл должен был вычислить скорость, с которой перемещаются его электромагнитные волны, и сравнить ее со скоростью света. К несчастью, он не мог сделать этого в Гленлэре, поскольку оставил все справочные пособия с нужными ему данными в Лондоне, но вернувшись в октябре, снова взялся задело.


НОВАЯ ТЕОРИЯ

Оказавшись в своем кабинете в Лондоне, Максвелл не мог ждать. Получив свежие экспериментальные данные, он вычислил, что электромагнитные волны перемещаются со скоростью 310740 км/с. Французский физик Физо до этого измерил скорость света в воздухе и получил 314850 км/с. Обе величины были слишком похожи для того, чтобы считаться совпадением: свет должен был быть электромагнитной волной.

Максвелл решил дополнить свою статью «Физические силовые линии* двумя новыми частями, которые вышли в 1862 году. В третьей части речь шла об электростатике, и в ней было введено понятие тока смещения и электромагнитных волн. В четвертой ученый воспользовался своей моделью для объяснения явления, открытого Фарадеем и заключавшегося в том, что при пересечении магнитного поля наблюдается вращение плоскости поляризации света.

Модель молекулярных вихрей, предложенная для объяснения силовых линий Фарадея, развилась в частички электричества, вращающиеся ячейки, а затем в упругие ячейки. Гипотеза о вихрях оказалась одной из самых продуктивных в истории физики. В данном случае настойчивость Максвелла к проведению физических аналогий естественным явлениям оказалась намного более плодотворной, чем в случае с кинетической теорией газов. Был лишь один довольно обременяющий вопрос, хотя и философского характера: общая справедливость его результатов была связана с механической моделью эфира. А это Максвеллу совсем не нравилось.

Уже в декабре 1861 года, до публикации двух последних частей статьи, Максвелл написал своему другу по Кембриджу: 

«[...] я пытаюсь найти точное математическое выражение всему тому, что известно об электромагнетизме, без помощи гипотез».

В статье он сообщал, что «гипотеза вихрей» является «вероятной», но модель эфира с вращающимися ячейками и частицами-подушечками крайне «неудобна»: это «предварительная и временная гипотеза». Максвелл решил оставить в стороне свою модель и использовать исключительно принципы динамики — математически сформулированные законы, которые управляют материей и движением. Чтобы вывести уравнения электромагнетизма без использования своей молекулярной модели, ему потребовался метод, разработанный в XVIII веке французом Жозефом Луи Лагранжем и описанный в его «Аналитической механике». Главным для Джеймса было то, что данный метод позволял анализировать систему, работая с ней, словно это черный ящик, и не требовал знаний о том, как она действует изнутри. Точная природа лежащего в основе механизма могла быть скрытой, но если система следовала законам динамики, то Максвелл был способен вывести уравнения, регулирующие электромагнитные процессы, без помощи какого- либо типа модели.

Цель была действительно мощной: расширить динамику Лагранжа до электромагнетизма. Чтобы сделать это, Максвеллу пришлось воспользоваться понятиями, введенными десятилетием ранее его другом Томсоном: энергия и принцип ее сохранения. С помощью данных понятий, математического мастерства и нескольких лет работы ученому удалось завершить великую статью «Динамическая теория электромагнитного поля», которую он разделил на семь частей и представил на собрании Королевского общества в декабре 1864 года. В ней Максвелл описал то, что назвал «электромагнитной теорией света». В сентябре этого года он признался одному из своих ассистентов: 

«(...) я очистил теорию от любых необоснованных предположений, следовательно, мы можем определить скорость света, измерив притяжение между двумя телами, которые находятся при определенной разности потенциалов». 


Рекомендуем почитать
Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Древний Восток. У начал истории письменности

Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.


Полчаса музыки. Как понять и полюбить классику

Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».