Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез - [19]

Шрифт
Интервал

cC+dD = aA+bB,

где символ + означает «в сочетании с», а символ = «совпадает по окраске». Точно так же мы можем сказать, что

dD = аА + bВ - сС.

В этом случае символ — означает, что для приравнивания цветов мы должны сочетать С и D и тогда это совпадет со смешением А и В. Следовательно, можно утверждать, что для любого цвета X существует такое смешение из трех цветов, что

хХ = аА + bВ+сС.

Если знак какой-нибудь из величин а, b или с отрицательный, то это значит, что цвет должен сочетаться с X для совпадения по окраске со смешением двух других. В январе 1855 года Максвелл написал: 

«Нет необходимости определять какие-либо цвета как типичные для этих ощущений. Юнг выбрал красный, зеленый и фиолетовый, но он мог выбрать любую другую группу из трех цветов, которые дадут белый, если их смешать подходящим образом».

Юнг включил в свою теорию цветовой треугольник, на котором он показывал, что все цвета, включая белый, можно получить на основе трех первичных: красного, зеленого и фиолетового. Это противоречие с триадой цветов, принятой среди художников, в 1849 году Форбс обозначил как «исключительное мнение».

В том же году в январе Максвелл согласился с идеей Юнга, но подчеркнул, что ключевым моментом выбора первичных цветов является их сочетание в нужных пропорциях для получения белого цвета. Благодаря своим экспериментам он чувствовал себя готовым к классификации цветов. Он исходил из предположения немецкого ученого Германа Грассмана (1809-1877), изложенного в его статье «О теории смешения цветов» (Oberdie Theorie der Farbenmischung), опубликованной в 1853 году. В ней говорилось, что с точки зрения цветов существуют три переменные: тон, или спектральный цвет; блеск, или интенсивность цвета; а также блеск белого. Исходя из этого Грассман ввел две производные величины: общий блеск, то есть сумма блесков цвета и белого, и степень насыщенности, или причина блеска одного цвета в общем цвете. Ученый доказал, что каждый цвет может быть представлен через свое положение и определенный «вес» в хроматическом круге Ньютона, так что, например, произведение общего блеска на расстояние от центра дает в результате интенсивность цвета.

Основываясь на всем этом, Максвелл показал, что данные переменные можно представить на диаграмме, которая включает в себя треугольную схему Юнга, цветовой круг Ньютона и классификацию цветов Грассмана. Его геометрическое представление цвета известно как «треугольник Максвелла».


ЦВЕТОВОЙ ТРЕУГОЛЬНИК

Три первичных цвета — красный, зеленый и синий (на самом деле это киноварь, изумрудный и ультрамарин) — представлены вершинами равностороннего треугольника (см. рисунок на следующей странице). Каждая точка треугольника изображает цвет, который можно получить определенным смешением этих трех цветов, а центральная точка представляет собой белый цвет. Каждая точка треугольника соответствует решению уравнения

Цвет = %К + %3 + %С,

где — это процент красного, определяемый как 100 k/(k+3+ с), %3 — процент зеленого, 100 з/(k+3+ с), а %C процент синего, 100 с/ (k+з+с), а и с — расстояния до точки треугольника. Кроме того, спектральный цвет задан угловым положением прямой к центру тяжести треугольника (белому), а уровень насыщенности — расстоянием от него.

Однако Максвелл осознавал, что не все цвета могут образовываться в качестве сочетания этих трех первичных: в его геометрическом представлении были цвета, которые оказывались вне границ треугольника. Какие? Те, что, как мы видели, получаются при вычитании первичного цвета, либо (то же самое) имеющие отрицательное значение с, з или к.

Система Максвелла была устойчивой, поскольку не зависела от выбора первичных цветов, но Джеймс выяснил, что его личный выбор этих цветов очень близок к идеальной триаде, поскольку подавляющее большинство цветов оказывалось внутри треугольника.

Результаты исследования Максвелла были опубликованы в 1855 году в журнале Эдинбургского королевского общества под названием «Эксперименты с цветом, восприятие глаза». Сегодня мы ежедневно сталкиваемся с тремя первичными цветами, когда включаем телевизор.

Конкретный цвет может быть определен в этом треугольнике по расстоянию от каждой из его сторон, как поясняется в тексте. Геометрический центр треугольника соответствует белому.


В письме Форбсу в ноябре 1857 года Максвелл объяснял:

«Раскрашенные листы бумаги и волчки, хотя и довольно точны в большинстве спектральных экспериментов, не предоставляют никаких абсолютных фактов по определению цветов».

Причину этого он изложил еще в статье 1855 года:

«Цвета на дисках никоим образом не воспроизводят первичных цветов, они просто представляют различные типы красок».

Следовательно, уравнения, которые нашел Максвелл, описывали всего лишь отношения «между цветами определенных пигментов».

Схема «цветовой коробки», сконструированной Максвеллом, где лучи света показаны пунктирной линией.


По этой причине еще в 1852 году он сконструировал (следуя фон Гельмгольцу) собственную «цветовую коробку» с рядом призм и щелей для экспериментов со светом (см. рисунок ниже). На тот момент наибольшая сложность была в качественной шлифовке оптики коробки. В 1855 году Максвелл сконструировал коробку, в которой мог наблюдать смешения двух чистых цветов, и на ее основе в следующем году — другую, портативную, «чтобы показывать явление, хотя и в грубом виде, другим людям».


Рекомендуем почитать
Темная сторона материи. Дирак. Антивещество

Поль Дирак, как и Ричард Фейнман, — один из главных представителей «второго поколения» ученых, обратившихся к квантовой механике после первопроходческих работ Планка и Эйнштейна. Знаменитое уравнение, носящее имя Дирака и детально описывающее поведение некоторых частиц, в том числе электрона, впервые объединило теорию относительности и квантовую теорию. Уравнение Дирака доказало возможность существования «антиподов» известных на тот момент частиц — электрона, протона и других. Открытые новые частицы известны нам как антивещество.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.