Магия чисел. Математическая мысль от Пифагора до наших дней - [122]
В частности, большая часть научной философии современных пифагорейцев, по всей видимости, проистекает из античного смешения чистой математики, которая является абстрактной логической системой, свободной от фактического содержания, и прикладной математики, которая частично предназначена для согласования с видимым и поддающимся наблюдению фактом и которая в этом смысле является эмпирической наукой. Тавтологическая пустота чистой математики перешла, возможно подсознательно, к математически сформулированным гипотезам и «законам» естественных наук; и с этой фактической пустотой, иллюзией либо непреложной неотвратимости, либо надуманно априорного характера математических истин, переплавляется во «все законы природы, которые обычно классифицируются как фундаментальные».
Эта цитата – читатель, вероятно, узнал ее – взята у Эддингтона и приводится в самом начале книги. Мы теперь вернемся к нашей отправной точке и вспомним несколько исторических деталей, которые, возможно, частично лежат в основе поразительного заключения, что те самые фундаментальные законы природы «можно предсказать целиком путем эпистемологических рассуждений. Они соответствуют априорному знанию и поэтому полностью субъективны». Кант, как мы видели, придерживался подобного мнения относительно математических истин, особенно таковых из геометрии; а теологические логики Средневековья почти так же воспринимали логику и зачатки естественных наук Аристотеля. Мы видели также, что математики XIX и XX столетий отказались от подобных убеждений по вполне обоснованной причине, что им противоречит современное знание. Это, однако, не должно вызвать предвзятое отношение к научному пифагореизму. Компетентные эксперты все еще продолжают свои споры, и, скорее всего, споры эти продолжатся еще долгие годы. Давайте, перед тем как перейти к выводам, раз и навсегда остановимся на том, что, если современные пифагорейцы правы, это наименее ожидаемое и предельно недосягаемое научное достижение за все двадцать пять столетий.
Фалес, Пифагор и их преемники, видимо, в конечном счете ответственны за уверенность наших современников в возможности открыть все фундаментальные законы физики только силой мысли. Их элементарная геометрия вышла из обобщения или идеализации чувственного опыта и самого простого наблюдения мира вокруг себя. Потом, как мы видели, они обнаружили, что истины геометрии выводимы из нескольких постулатов, или, как их стали называть позднее, «общих понятий». Постулаты оказались необходимыми, не просто достаточными для последовательного понимания физической вселенной. Аналогично логика в процессе дедукции была неизбежной. Для метафизических наблюдателей естественно было делать вывод, что «законы мысли» и «конституция разума» делают все обращения к чувственному опыту не только лишними, но и вводящими в заблуждение.
Впечатленные триумфами геометров, философы воздвигают свои собственные постулаты (или иногда скрывают их) и переходят к рассуждениям о строении и основных законах вселенной, природе божественного и об отношении человеческой души к тому и другому. Простые постулаты снова казались необходимыми для их изобретателей или исследователей, и снова сопутствующее дедуктивное рассуждение оказалось столь же непреклонным, как судьба, если не самой судьбой.
Философы даже более, нежели математики, оказались убеждены в очевидной правильности их умозаключений, поскольку в целом нельзя было очевидно сопоставить дедукцию с наблюдением. В тщательно аргументированной абстрактной науке, порожденной математикой и философией, было бы вполне реально проверить некоторые выводы фактами. Но более влиятельные лидеры безоговорочно доверяли своим рассуждениям. Эта несомненная уверенность в чистом разуме как необходимом и достаточном орудии понимания и открытия перешла из греческой науки и философии в ортодоксальные научные методики средневековых европейцев.
Немалые услуги, которые классическое дедуктивное рассуждение оказало средневековому богословию, помогли этому методу получить ложный престиж в науке. «Все святые и мудрецы», распознавшие в банальных мелочах элементарной арифметики типичный образец вселенной, с готовностью обнаружили все тайны природы в духовной нумерологии Священного Писания. Поскольку материальный мир не представлял большой важности для ревностных мыслителей, обеспокоенных прежде всего спасением собственных и других душ для нематериального загробного мира, наука была подчинена богословию в работах новых Учителей. Если наблюдение и опыт противоречили разуму, тем хуже для наблюдения и опыта. Логика и богословие объединились в подтверждении вердикта Пифагора, что число управляет вселенной.
Ближе к завершению этого золотого века абсолютной веры доктринеры и более просвещенные адепты превосходства и вседостаточности чистого разума нашли симпатичное подтверждение их верования в древних (и уже поэтому уважаемых) идеях платонистов. Очищенная от богословской незрелости, нумерология больше не подозревалась в нелепости, противоречащей образованному уму. В обработке Платона древняя магия чисел превратилась в самую сущность естествознания, как засвидетельствовано уважаемыми представителями науки. Потом, чуть ли не в один день, с появлением современного научного метода в конце XVI века, даже философская нумерология прекратила сковывать инициативных людей науки, и основательное изучение физической вселенной пошло намного быстрее, чем в любые предыдущие эпохи.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.