Ложь креационизма - [28]
— Хорошо, — сцепив зубы, скажет антиэволюционист, — виды могут происходить друг от друга. А как объяснить появление родов, семейств и отрядов? Ведь различия между их представителями больше видовых.
Ответим и на этот вопрос, цитируя опять-таки Кэрролла, главу 22:
«…виды разных семейств должны отличаться сильнее, чем виды разных родов одного семейства, виды разных отрядов — сильнее, чем виды разных семейств одного отряда, и т. д. Подобное впечатление может оказаться и верным, если рассматривать только современные формы, но когда речь идёт о начальных этапах радиации крупных таксонов, это явно не так… Уилсон (Wilson, 1971) описал прогрессивную эволюцию примитивных селенодонтных парнокопытных, у которых популяции одного раннего вида дали представителей разных родов, а затем и семейств.
Относительно полно документирована крупномасштабная радиация копытных в самом конце мела и начале палеоцена. Тогда из единственного семейства древних кондилартр всего за 2 — 3 млн. лет дифференцировалось 16 самостоятельных отрядов (Van Valen, 1978)…
С точки зрения изменчивости и дифференциации картина, наблюдаемая на ископаемом материале этих предковых групп, почти не отличается от схемы радиации в кайнозое представителей множества других семейств. Наиболее существенно здесь то, что многие виды и роды на следующих этапах радиации представлялись представителями разных семейств и отрядов. На уровне особей и видов эволюция ранних кондилартр выглядит не особенно отличающейся от типичного микроэволюционного процесса. Различия заключаются не в самих видах, а в возможностях, реализованных потомками».
Иными словами, дальние предки слонов, лошадей, оленей, дюгоней, даманов, носорогов, быков и других копытных различались между собой не более, чем виды одного семейства или рода.
«Процессы, ведущие к дифференциации, одинаковы независимо от того, обречён дочерний вид на вымирание, или даст начало новому отряду. Таксономические группы более высокого ранга можно выделить лишь по прошествии времени, когда ряд последующих этапов дифференциации приведёт к появлению множества производных таксонов».
Стр. 117: приводится фраза из журнала «Scientific American»:
«Множество бактерий были наделены генами устойчивости ещё до начала использования антибиотиков. Учёные не знают причины появления и существования этих генов».
Странное высказывание для научного журнала. Оно явно показывает средний уровень американца — человека весьма недалёкого. Давайте задумаемся, когда на Земле появились антибиотики? Ясно, что они намного старше людей. Не смейтесь, сторонники творения. Лучше вспомните историю открытия Флемингом первого антибиотика — пенициллина. Он был выделен из зелёной плесени — грибка Penicillum. Неужели бактерии столкнулись с этим грибком только в лаборатории Флеминга? Конечно, нет! Множество живых организмов вырабатывает биологически активные вещества, подавляющие рост бактерий. Приспособление к этим веществам идёт миллионы лет. Так что на первые, подобные пенициллину, антибиотики, бактерии нашли защиту.
А вот к новым, не имеющим природных аналогов, антибиотикам, бактерии приспосабливаются дольше. Например, антибиотики сульфаниламидного ряда оказались более действенными, чем аналоги пенициллина. А быстрота приобретения «иммунитета» здесь кажущаяся. Просто бактерии очень быстро размножаются, и смена поколений у них идёт гораздо быстрее, чем, к примеру, у позвоночных. К тому же, у бактерий имеется способ прямого переноса наследственной информации от одной особи к другой через фрагменты плазмидной ДНК.
Также быстро размножающимися видами являются насекомые. Поэтому неудивительно то, что они быстро вырабатывают устойчивость к искусственным ядам. В природе многие растения защищаются от травоядных с помощью ядов. Иногда, конечно, насекомые приспосабливаются настолько, что свободно едят ядовитые растения (примеры — олеандровый бражник (Deilephila nerii), гусеницы которого поедают листья смертельно ядовитого для позвоночных кустарника олеандр (Nerium oleander), и бабочка-монарх (Danaus plexipus) из Америки, чьи гусеницы едят ядовитый ваточник), но это ещё не означает мир растения с насекомым. Растения постоянно вырабатывают новые яды, но этот процесс незаметен одному, и даже многим поколениям людей, поскольку он очень медленный, как и большинство эволюционных процессов. Но иногда эволюционные изменения очень быстры.
«Уникальный пример выработки новой адаптации на протяжении одного поколения людей буквально обошёл всю научную литературу: приспособление калифорнийского кузнечика Romalia microphtera к гербициду 2,4-дихлорфенол. В его популяции возникли и распространились особи, которые не только нейтрализовали яд, как это часто происходит и в других популяциях насекомых. Мутантные особи оказались способными трансформировать 2,4-дихлорфенол в ещё более ядовитое вещество — 2,5-дихлорфенол, которое образуется при соединении 2,4-дихлорфенола с секретируемыми кузнечиком веществами. Благодаря этому кузнечик стал неуязвим для своих врагов — хищных насекомых и птиц».
Это пример из книги Э. И. Колчинского «Эволюция биосферы» (стр. 196). И здесь мы видим нечто большее, чем простую невосприимчивость к яду.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.