Логическая игра - [9]
Запишем теперь силлогизм полностью. Условимся ставить после посылок горизонтальную черту (означающую «следовательно») и опускать для краткости слово «булочки», стоящее в конце каждой посылки. У нас получится следующее:
«Некоторые свежие булочки неполезные».
«Ни одна вкусная булочка не неполезная».
–––
«Некоторые свежие булочки невкусные».
Вот вы и решили (надо сказать, весьма успешно) свой первый силлогизм. Позвольте поздравить вас и выразить надежду, что это всего лишь начало длинной и славной серии аналогичных побед!
Попробуем теперь решить ещё один силлогизм, гораздо более трудный, чем первый, после чего вы спокойно сможете играть в «Логическую игру» либо сами с собой, либо (что предпочтительнее) с приятелем, которому эта забава придётся по вкусу.
Посмотрим, какое заключение можно вывести из двух посылок:
«Все драконы не лукавые».
«Все шотландцы лукавые».
Имейте в виду: я отнюдь не гарантирую, что посылки силлогизма выражают реальные факты. Во-первых, мне никогда не приходилось видеть дракона. Во-вторых, для нас, логиков, не имеет ни малейшего значения, истинны или ложны наши посылки: все, что мы должны уметь делать, — это решать, приводят ли они логически к определённому заключению. Иначе говоря, мы должны уметь доказывать, что если бы посылки истинными, то и заключение также должно было бы быть истинным.
Как видите, настала пора отказаться от булочек, и поднос перестал быть для нас полезным. В качестве «Мира» мы должны выбрать какой-то класс предметов, включающий в себя шотландцев и драконов. Может быть, такие предметы имеет смысл назвать «существами»? Поскольку «лукавые», очевидно, является признаком, входящим в средние члены, мы выберем следующие обозначения: m=«лукавые», x=«драконы», и y=«шотландцы». Записанные полностью, наши посылки примут следующий вид:
«Все существа — драконы — нелукавые (существа)».
«Все существа — шотландцы — лукавые (существа)».
Подставляя вместо слов буквенные обозначения, получаем:
«Все x суть m'».
«Все y суть m».
Первая посылка, как вы уже знаете, состоит из двух частей:
«Некоторые x суть m'»
и
«Ни один x не есть m».
Вторая посылка также состоит из двух частей:
«Некоторые y суть m»
и
«Ни один y не есть m'».
Начнём с отрицательных частей обеих посылок, т. е. представим с помощью большой диаграммы, во-первых, суждение «Ни один x не есть m» и, во-вторых, суждение «Ни один y не есть m'». Думаю, вам не нужно объяснять, почему этим суждениям (в отдельности) соответствуют диаграммы
и что, взятые вместе, эти диаграммы образуют одну диаграмму
Осталось изобразить на полученной диаграмме две утвердительные части посылок — «Некоторые x суть m'» и «Некоторые y суть m».
Единственные две клетки большой диаграммы, в которых могут находиться предметы, обладающие признаками xm', — это «уголки» 9 и 10. Относительно клетки 9 уже известно, что она пуста. Следовательно, красную фишку мы должны поставить на «уголок» 10.
Аналогично предметы с признаками ym могут находиться лишь в клетках 11 и 13. В клетке 11 уже стоит чёрная фишка — клетка пуста. Следовательно, красную фишку необходимо поставить на клетку 13.
Окончательный результат — диаграмма
А что из представленных здесь сведений можно использовать при построении малой диаграммы?
Рассмотрим по порядку все четыре клетки малой диаграммы.
Клетка 5. Мы видим, что она полностью пуста (и поэтому ставим на неё чёрную фишку).
Клетка 6. Эта клетка занята (её мы отметим красной фишкой).
Клетка 7. То же самое.
Клетка 8. Относительно этой клетки никаких сведений у нас нет.
Итак, малая диаграмма заполнена весьма щедро:
А какое заключение можно вывести отсюда? Одно суждение просто не в состоянии вместить столь богатую информацию, нам придётся уступить и согласиться на этот раз на два суждения.
Выбрав в качестве субъекта x, мы получим первое суждение: «Все x суть y'», т. е. «Все драконы не шотландцы».
Выбрав в качестве субъекта y, мы получим второе суждение: «Все y суть x'», т. е. «Все шотландцы не драконы».
Запишем теперь весь силлогизм полностью: и две наши посылки, и оба наших заключения. Вот что у нас получится:
«Все драконы не лукавые».
«Все шотландцы лукавые».
–––
«Все драконы не шотландцы».
«Все шотландцы не драконы».
На прощание я хотел бы сделать одно важное замечание. В некоторых книгах по логике вообще не предполагается, что какой-то предмет существует. Суждение «Некоторые x суть y» в таких книгах понимается так: «Признаки x и y совместимы, в силу чего некий предмет может одновременно обладать ими обоими». Суждение же «Ни один x не есть y» они интерпретируют как несовместимость признаков x и y, в силу которой ни один предмет не может обладать ими обоими.
Суждения в таких трактатах имеют совсем иной смысл, чем тот, который они имеют в нашей «Логической игре», и будет небесполезно, если мы ясно поймём, в чем именно состоит различие.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
От издателя:Эта сказка известна маленьким читателям во всем мире. Ее автор — знаменитый английский писатель Льюис Кэрролл. Рассказ об Алисе перевел на русский язык Владимир Набоков и Алиса стала Аней, зажила новой жизнью.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книгу включены две самые известные и популярные сказочные повести английского писателя и математика Льюиса Кэрролла: «Алиса в Стране Чудес» и «Алиса в Зазеркалье». Неповторимое своеобразие кэрролловского стиля, необычные ситуации, в которые попадает главная героиня, удивительные превращения, происходящие с ней и забавные герои, с которыми Алиса встречается во время своих путешествий – все это и есть Страна Чудес, край удивительных вопросов и еще более удивительных ответов.Думайте! Фантазируйте! Следите внимательно за мыслями и словами! И вы попадете в Страну Чудес, где привычное становится удивительным.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.Для школьников старших классов, студентов, преподавателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.