Кварки, протоны, Вселенная - [36]

Шрифт
Интервал

В новом здании Московского университета на Ленинских горах есть комната, где часто собираются физики-теоретики. По традиции наиболее почетные гости пишут на стенах этой комнаты какую-нибудь мысль, которую каждый из них считает наиболее важной. Дирак написал: «Физический закон должен быть математически изящным».

Найденное им электронное уравнение и в самом деле было очень изящным. Из него можно было как частный случай вывести уже известные уравнения квантовой механики, получить законы Ньютона. И Дирак настойчиво старался понять физический смысл частиц с отрицательной энергией.

Наконец, решение было найдено. И очень неожиданное. Оказалось, что частицы с отрицательной энергией — это ... дырки в вакууме! Чтобы уяснить себе, в чем состояла эта идея Дирака, следует познакомиться с еще одним важным свойством электрона, открытым незадолго до этого швейцарским физиком-теоретиком Вольфгангом Паули.

Анализируя движение электронов в атомах, Паули заметил, что никогда не бывает так, чтобы у нескольких электронов одновременно были бы совершенно одинаковые параметры. Всегда чем-нибудь да они отличались друг от друга — энергией, направлением движения или еще какой-либо характеризующей их величиной. Получалось, иначе говоря, что любое физическое состояние, возможное в природе, может быть занято только одним электроном. Это правило часто называют принципом Паули. Его корни лежат глубоко в волновых свойствах микрочастиц и даже глубже — в свойствах окружающего нас пространства. Многое здесь стало понятным совсем недавно — в связи с разработкой «супертеории», объединяющей гравитационные и другие типы взаимодействий. А полвека назад, когда Дирак решал свое уравнение, принцип Паули рассматривался просто как подсказанное экспериментом и не знающее исключений правило.

Так вот, основываясь на принципе Паули, Дирак предположил, что все состояния с отрицательной энергией уже заняты электронами — в каждом из них находится по одной частице. А так как наблюдать мы можем лишь изменения, то сама по себе вся эта система бесконечно большого числа частиц остается для нас незаметной. Дирак назвал ее морем отрицательных энергий. Она воспринимается нами как пустота, как вакуум и играет роль фона, на котором протекают наблюдаемые физические явления. Если, однако, из этого моря выбить электрон, то новое состояние — «море с дыркой» — будет обладать по сравнению первоначальным фоном положительной энергией и положительным электрическим зарядом (вспомним, что вычитание отрицательной величины эквивалентно прибавлению положительной. И дырка будет наблюдаема. Она может перемещаться в море, и это перемещение мы воспримем как движение обычной частицы с положительной энергией и положительным зарядом.

В целом процесс выбивания электрона из моря будет выглядеть для нас как рождение в пространстве пары частиц с разными зарядами. Для этого надо, конечно, затратить энергию, например энергию электромагнитного поля.

Для наглядности можно представить себе график: горизонтальная прямая, выше которой положительная энергия, ниже — отрицательная. Чтобы поднять электрон снизу вверх, надо, как при подъеме ведра из колодца, потрудиться — затратить энергию.

Возможен и обратный процесс: электрон «проваливается» в дыру. Мы увидим, что произошла аннигиляция двух столкнувшихся частиц с противоположными зарядами, в результате чего выделилась энергия излучения — образовались фотоны.

Таким образом, хотя уравнение Дирака и предсказывает существование частиц с энергиями обоих знаков в эксперименте всегда будут наблюдаться частицы с положительной энергией, а отрицательные энергии, подобно мнимым числам в математике, останутся как бы за кулисами событий — на уровне математического аппарата теории.

В конце 20-х годов, когда Дирак вывел свое знаменитое уравнение и предложил «теорию дырок», была известна всего лишь одна элементарная частица с положительным электрическим зарядом — протон. Однако его нельзя было считать «дыркой» в море отрицательных энергий, так как массы электрона и «дырки» должны быть одинаковы, протон же почти в две тысячи раз тяжелее электрона. Поэтому пришлось допустить, что наряду с электроном в природе должна существовать еще одна такая же частица, только положительно заряженная. А так как при столкновении они аннигилируют и их вещество полностью переходит в энергию излучения, их стали называть частицей и античастицей.

Так в науку вошла идея антивещества.

Электрон часто обозначают значком е>-, а антиэлектрон е>+. Процесс аннигиляции, рождение двух гамма-квантов, выражается формулой е>- + е>+—> 2γ. Гамма-квантов обязательно два, один гамма-квант родиться не может. Это легко понять, если рассмотреть аннигиляцию неподвижных частиц. Их импульс — нуль. По третьему закону Ньютона импульс сохраняется, поэтому должно родиться две частицы, разлетающиеся в противоположных направлениях. Их суммарный импульс равен нулю. В принципе может родиться и больше частиц, тогда закон сохранения импульса тоже, конечно, будет выполняться, но такие события происходят очень редко.

Уравнение Дирака сразу же оказалось в центре внимания физиков. Его обсуждали на семинарах и международных физических конгрессах. Это было главное научное событие конца 20-х — начала 30-х годов. Однако идею об античастицах-дырках поначалу серьезно не воспринимали.


Еще от автора Владилен Сергеевич Барашенков
Вселенная в электроне

Есть ли жизнь внутри… электрона? Из чего состоят протон и мезон? Из чего «построено» пустое пространство? Загадки квантовой механики. Взрыв, породивший мир, и первые мгновения после рождения Вселенной. Настанет ли время, когда ученые будут знать все на свете?.. Об этих и других удивительных проблемах, загадках и парадоксах рассказывается в книге, написанной физиком-теоретиком для школьников старших классов.


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Возможен ли вечный двигатель?

К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Если раскопать холм…

Автор, кандидат исторических наук, рассказывает о новейших открытиях в археологии, углубивших и расширивших наши представления о прошлом человечества.


Дважды два = икс?

Научно-популярная книга, рассказывающая о многолетнем эксперименте советских психологов по развитию психики младших школьников в процессе учебной деятельности, по выработке основ целенаправленного формирования творческого мышления школьников в самом начальном периоде обучения. В книге использованы экспериментальные материалы преимущественно харьковской группы психологов.Для широкого круга читателей.Дополнение от составителя:Эта книга самым краешком приподнимает завесу над вроде бы совсем недавним, но, как оказывается, практически неизвестным прошлым.


Дорогами подводных открытий

Центральная тема книги — использование подводных судов и аппаратов для изучения глубин Мирового океана. Автор, кандидат технических наук, подробно рассматривает преимущества подводных судов, обосновывает экономическую и научную целесообразность их применения в тех случаях, когда другие средства не дают эффекта. Книга написана по материалам как отечественного, так и зарубежного опыта. Одна глава книги целиком посвящена «Северянке» — бывшей боевой подводной лодке, переоборудованной в научно-исследовательское судно.