Кванты и музы - [9]

Шрифт
Интервал

Наверно, нечто подобное происходит при наступлении атакующей армии: можно определить, сколько снарядов и пуль выпустила в неприятеля эта армия, но невозможно установить, какой солдат или орудие и когда выпустило ту или иную пулю.

Вывод: нет и не может быть жёсткой связи между моментом рождения квантов внутри «атома Бора» при перескоке электронов с одной орбиты на другую и формулой Планка, рисующей поведение этих квантов — потока излучения из вещества — уже вне атома.

Это обескураживало физиков. Жизнь вносила в строгую, привычную к точности физику неопределённость, граничащую с произволом. Пока учёные видели лишь то, что вновь открытые ими квантовые законы запрещают, не видя ещё того, что они разрешают.

Об этом догадался опять-таки Эйнштейн. В его работе, опубликованной в 1917 году, был один нюанс, роль которого выяснилась много позже. Эйнштейн заподозрил возможность управлять излучением атомов. Он указал на то, что атом может излучать не только под влиянием непознанных ещё внутренних причин, но и в результате воздействия внешнего электромагнитного поля. Это был намёк на сенсационные возможности для техники будущего.

Важность этого замечания и его глубокий смысл долго ускользали от большинства учёных. Лишь незадолго до Великой Отечественной войны молодой преподаватель Московского энергетического института Фабрикант увидел в теории Эйнштейна возможность создать усилители света, работающие за счёт внутренней энергии атомов и молекул. Много позже, в 1954 году учёные следующего поколения Басов и Прохоров в Москве и независимо от них Таунс в Нью-Йорке, не зная о предложении Фабриканта, создали молекулярный генератор радиоволн, основанный, по суще ству, на той же работе Эйнштейна. Конечно, для создания этого прибора им пришлось учесть сложные закономерности из области радиофизики и молекулярной физики. Они вступили в интереснейшую область познания, давшую человечеству мазеры и лазеры, которые в свою очередь открыли широкие пути познания природы и развития технологии. Но об этом речь впереди.

Пока же мы должны понять, как постигали учёные давнюю дилемму «волна — частица».

Итак, Эйнштейн, уверовав в квантовую сущность природы, ещё дальше отошёл от волновой теории света. Остальные же учёные старшего поколения продолжали бить тревогу, указывать на то, что теория фотонов не способна объяснить те оптические явления, которые непринуждённо вытекают из волновых представлений. Эти учёные соглашались с фотонами лишь при одном условии: если фотоны представляют собой не физическую реальность, а только приём, облегчающий расчёты.

Впрочем, уже никто не считал эйнштейновские фотоны возвратом к прежним неделимым. Ведь фотоны появлялись в актах испускания и исчезали в актах поглощения, в то время как прежние частицы, например корпускулы Ньютона, считались вечными и неизменными.

Вскоре молодой американец Комптон, «крёстный отец» фотона, доказал, что фотоны могут не только рождаться и исчезать, но и видоизменяться. Он наблюдал воочию, как при столкновении с электроном фотон изменяет и свою энергию, и направление полёта. Конечно, можно сказать и так: при столкновении с электроном один фотон исчезает, а совсем другой рождается. Здесь различаются лишь слова. Суть состоит в том, что Комптон обнаружил доказательства реального существования индивидуальных фотонов.

Все попытки объяснить наблюдения Комптона при помощи волновой теории оканчивались неудачей.

Так, оптические явления всё более чётко располагались как бы в две группы. В одну входят те явления, которые непринуждённо объясняются на основании волновой теории и остаются необъяснимыми при помощи фотонов, во вторую — те, что не поддаются волновому описанию и с лёгкостью вытекают из представления о фотонах.

Известный исследователь рентгеновских лучей, лауреат Нобелевской премии Брэгг описал ситуацию так: каждый физик вынужден по понедельникам, средам и пятницам (занимаясь фотоэффектом и эффектом Комптона) считать свет частицами, а по вторникам и четвергам (изучая дифракцию и интерференцию) считать его волнами.

Вскоре это анекдотичное, а в сущности, неблагополучное положение распространилось в атомную физику.

Физиков беспокоило не только то, что модель атома Бора не позволяет объяснить спектры подавляющего большинства атомов — не даёт возможности понять, почему и когда атом излучает те или иные кванты энергии. Само существование стационарных орбит электронов в атоме оставалось необъяснённым. Почему электроны могут вращаться вокруг ядра на определённых расстояниях от него? Почему им нельзя вращаться на других расстояниях? Особенно многозначительным казалось то, что расстояния орбит от центра ядра кратны определённым числам, то есть тут явно не было случайности — тут сказывался жёсткий закон. Но какой?!

Первый подход к этой загадке нашёл совсем молодой французский физик Луи де Бройль. Он представил себе, что электроны в атоме — словно ноты на нотных строчках.

Расстояния между строчками указывают, что изменения частот звучания при переходе со строчки на строчку описываются определёнными дробными числами. Так же, как дробные числа, относятся между собой и радиусы орбит в атоме, на которых вращаются электроны.


Еще от автора Ирина Львовна Радунская
«Безумные» идеи

Книга И. Радунской «„Безумные“ идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания. О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «„Безумные“ идеи». Книга «„Безумные“ идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки.


Джунгли

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Проклятые вопросы

В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных.


Крушение парадоксов

Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.


Превращения гиперболоида инженера Гарина

Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.


Четыре жизни академика Берга

К ЧИТАТЕЛЯМКнига, которую вы держите в руках, это не история с «воскрешениями» и «перерождениями». Это история жизни реального человека в реальном мире. Но для современного молодого читателя она может показаться действительно «потусторонней».Жизненный путь нашего героя от русского офицера-подводника, впоследствии краснофлотца, до выдающегося советского ученого пришелся на годы, когда наша родина, преодолевая неимоверные трудности, превращалась в могучую мировую державу — Союз Советских Социалистических Республик.Завеса времени, отделяющая нынешнюю Россию от той страны, чьей наследницей она является, не так уж и велика.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.