Кванты и музы - [59]
Речь идёт о важной ветви экспериментальной ядерной физики, о создании так называемых поляризованных ядерных мишеней, которые физики обстреливают пучками частиц высоких энергий, получаемых при помощи ускорителей, или пучками нейтронов.
Цель обстрела: изучить процесс столкновения частиц «снарядов» с частицами-«мишенями». Ведь между ядрами атомов, образующих мишень, и пучками частиц, падающих на неё, возникают разнообразные ядерные реакции, начиная от простых взаимодействий, при которых лишь меняется характер движения сталкивающихся частиц, до сложнейших, сопровождающихся рождением новых элементарных частиц! Тут и возникает возможность разобраться в деталях этих взаимодействий: установить характер сил, действующих между частицами, выяснить свойства этих мельчайших частиц, выявить, имеются ли среди них истинно простейшие частицы мироздания, и, если повезёт, попытаться восстановить сложную иерархию различных семейств этих частиц, объединяемых общими свойствами.
Но и без того сложную картину таких взаимодействий ещё более усложняет хаос, царящий в глубинах материи. Этот хаос вызван естественными причинами, это результат непрерывного теплового движения частиц. Чтобы избавиться от него или хотя бы ослабить естественный фон, учёные идут на всякие ухищрения. В частности, понижают температуру мишени как можно ниже, в область, близкую к абсолютному нулю. Но и этого мало. Хотя тепловые движения при этих температурах существенно ослабляются, всё равно оси частиц мишени располагаются по всем направлениям случайно, хаотично. Так выглядят туловища муравьёв, зафиксированных моментальным фотоснимком. И если «нападающие» частицы что-то меняют в этом беспорядке, понять, что же именно изменилось, очень трудно.
Для того чтобы извлечь максимум информации из ядерных экспериментов, нужно, чтобы ядерные частицы на воображаемой фотографии в начале процесса напоминали не хаос муравейника, а строй солдат, выровненный по команде. Вот тогда изменения в расположении частиц будет легко зафиксировать.
Что же предпринять для установления порядка среди частиц мишени? Вот над чем думали экспериментаторы. И решили использовать для этой цели тот факт, что многие атомные ядра являются маленькими магнитиками. Может быть, попытаться ориентировать их при помощи сильного магнитного поля? Так возникла идея «магнитного кнута».
Но и это не очень дисциплинировало частицы. Тогда кроме «магнитного кнута» французские учёные Абрагам и Проктор применили «радиотехническую плётку». И действительно, магнитное поле плюс радиоволны определённой частоты позволили добиться большей упорядоченности ядер. Наилучший эффект при этом достигается, если радиоволны действуют непосредственно не на ядра, а на электроны парамагнитных атомов, вводимых в небольшом количестве в состав вещества мишени. Дело в том, что магнитные свойства электронов примерно в 2000 раз сильнее, чем магнитные свойства ядер, и поэтому воздействие радиоволн на них оказывается во столько же раз более эффективным. Электроны же, в свою очередь, очень хорошо передают полученную упорядоченность ядрам атомов мишени.
Все эти тончайшие манипуляции с микрочастицами придали вес французским экспериментам. Метод, теоретически и практически разработанный Абрагамом и Проктором, нашёл широкое применение в ядерной физике и вошёл в учебники и методические пособия.
Каково же было недоумение и даже возмущение специалистов, когда московские физики Ацаркин и Родак выдвинули возражения против этого замечательного метода. Какие основания? Что заставило их сомневаться? Оказывается, возражения основывались на анализе явления, который они провели, применив провоторовский подход, с таким успехом использованный ими ранее.
Ацаркин и Родак уже не могли опереться на представление о единой температуре, якобы характеризующей поведение всех частей атома, — представление, лежащее в основе метода Абрагама и Проктора. Теперь московские физики были убеждены, что теория, базирующаяся на идеях Провоторова, и опыт свидетельствуют о том, что такая единая температура устанавливается в веществе далеко не мгновенно. Нужно было заново проанализировать всё происходящее в опытах, отказавшись от устаревших догм. Нужно было решиться признать и необходимость новых математических методов для расчёта взаимодействия частиц с электромагнитными полями.
Предварительные оценки показали, что модель Абрагама — Проктора действительно не является полноценной основой для расчёта и получения поляризованных мишеней. Более того, она является лишь частным случаем, освоенным раньше других благодаря своей простоте.
Развитие теории и экспериментальные исследования проводились на этот раз практически параллельно, подкрепляя и дополняя друг друга. И закончились новым торжеством провоторовского подхода.
Оказалось, что новый метод позволяет достичь большей степени упорядоченности частиц мишени, чем это удавалось сделать раньше. Более того, можно успешно обеспечить поляризацию ядер даже в тех мишенях, в которых на основе метода Абрагама — Проктора получить это, казалось, совершенно невозможно. Так возник новый мост между «чистой» теорией и потребностями техники. Рассказанное можно считать внедрением нового круга идей в ядерной физике.
Книга И. Радунской «„Безумные“ идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания. О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «„Безумные“ идеи». Книга «„Безумные“ идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных.
Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.
Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.
К ЧИТАТЕЛЯМКнига, которую вы держите в руках, это не история с «воскрешениями» и «перерождениями». Это история жизни реального человека в реальном мире. Но для современного молодого читателя она может показаться действительно «потусторонней».Жизненный путь нашего героя от русского офицера-подводника, впоследствии краснофлотца, до выдающегося советского ученого пришелся на годы, когда наша родина, преодолевая неимоверные трудности, превращалась в могучую мировую державу — Союз Советских Социалистических Республик.Завеса времени, отделяющая нынешнюю Россию от той страны, чьей наследницей она является, не так уж и велика.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.