Кванты и музы - [40]

Шрифт
Интервал

ЛАЗЕРЫ И БУДУЩЕЕ

…Если подойти к ФИАНу со стороны улицы Вавилова, то рядом с корпусом прохоровской лаборатории увидишь здание-двойник. Это Лаборатория квантовой радиофизики, которой руководил директор института академик Басов.

Здесь тот же «бог» — лазер. И в этой лаборатории учёные, вооружённые лазером, во многих областях науки, техники, промышленности обогнали сегодняшний день.

Лаборатории Басова и Прохорова, несомненно, лидеры в квантовой радиофизике. Но, разумеется, они в нашей стране не единственные — лазерная тематика сегодня так активно внедрилась во все сферы теоретического поиска и практического использования его результатов, что рассказать о всех достижениях лазеров просто невозможно. Поэтому попытаемся отобрать из огромного многообразия лазерных тем те, которые решают кардинальные проблемы будущего, кризисные проблемы.

Главная забота современного человечества — поиски новых источников энергии.

Зажечь лазерным лучом земное солнце — неиссякаемый источник термоядерной энергии — эта мечта овладела учёными, когда лазер был ещё немощен и мало изучен. И когда поиск путей к управлению термоядерной реакцией шёл совсем по другому пути. Уже более четверти века передовые страны тратят большие средства на развитие исследований по магнитному удержанию термоядерной плазмы. Образцом для подражания служит Солнце, практически неисчерпаемый источник энергии. Физики XX века пришли к выводу, что энергия, заставляющая светить Солнце и другие звёзды, возникает в результате превращения водорода в гелий. Взрыв первой водородной бомбы, осуществлённый в 1952 году, подтвердил мощь этой реакции и возможность осуществления её на Земле. Оставалось, казалось бы, немногое: найти средний путь между мгновенным взрывом, происходящим в бомбе, и медленным, но огромным по масштабам и неподвластным человеку процессом, протекающим в недрах звёзд. Нужно было превратить термоядерный синтез в управляемую, контролируемую реакцию и использовать её для мира, а не для войны.

Рассмотрим вместе с учёными эту возможность.

Для того чтобы два ядра тяжёлого водорода дейтерия могли слиться друг с другом, образуя ядро гелия и высвобождая порцию энергии, они должны столкнуться между собой с огромными скоростями. Только при этом могут быть преодолены силы взаимного отталкивания одноимённых зарядов ядер. Силы, защищающие ядро от ему подобных, крепче лат средневековых рыцарей. Чтобы придать ядрам дейтерия нужную скорость, следует на греть их до температуры в несколько десятков миллионов градусов. Но одного этого недостаточно. Чтобы реакция успела развиться в устойчивый процесс, такую температуру нужно поддерживать достаточно долго. Ведь ядра невозможно точно направить одно на другое с тем, чтобы они обязательно столкнулись между собой. Столкновение — дело случая. И чтобы такие случаи реализовались в достаточном количестве, нужно на некоторое время удержать раскалённый газ в ограниченном объёме, несмотря на огромные скорости, заставляющие его рассеиваться в пространстве.

Попробуем на минуту представить себе, что происходит в глубине Солнца или солнцеподобного светила — механизм процесса при температуре в миллионы градусов. В таком пекле атомы не могут «выжить» и сохраниться в целом виде. Огромная температура разрывает их на части, отрывает электроны от ядер. Они движутся независимо и с большими скоростями. Но сила притяжения не даёт им разлететься, в недрах звёзд образуется особое состояние вещества — раскалённая, плотная плазма, удивительное состояние материи, больше всего напоминающее газ, а точнее ту плазму, которая существует внутри трубок газосветных реклам или возникает в лампах-вспышках, применяемых фотографами. Разница лишь в температурах и давлениях. Здесь, в земных условиях, это тысячи градусов и доли или единицы атмосфер. Там — миллионы. Здесь далеко не все атомы разрушены, не все ядра оголены, не все электроны освобождены. Там — все.

Различен и состав вещества. Здесь, в лампах, это инертные газы или их смесь. Там — преимущественно водород. Плазма, бурлящая в недрах звёзд, состоит главным образом из протонов — ядер водорода — с незначительной примесью ядер других лёгких элементов и, конечно, электронов.

Внутри звёзд протекают сложные ядерные реакции, в результате которых четыре протона объединяются между собой, образуя ядро атома гелия — альфа-частицу. При этом выделяется энергия, поддерживающая сияние звёзд.

В каждом таком акте слияния испускается малая порция энергии. Но размеры звёзд огромны, велика и энергия, выделяющаяся в течение миллиардов лет. На Земле невозможно воспроизвести точно условия, существующие в недрах звёзд. Нужно добиться слияния протонов более простым, доступным путём. Чтобы это был не взрыв, а безопасный управляемый процесс.

Получение горячей плазмы в земных условиях — цель и надежда всей будущей энергетики. Казалось бы, всё ясно: надо нагреть плазму и удержать её частицы от разлетания. Но как нагреть и как удержать?

Первый обнадёживающий путь указал академик Тамм: создать и нагреть плазму электрическим разрядом и удержать её силой магнитных полей в особых «магнитных бутылях». По этому пути пошли многие учёные. Исследователи увлекались то одной, то другой конструкцией остроумных и, казалось, надёжных устройств — как правило, это были громоздкие приборы, скованные массивными электромагнитами. Но наградой были лишь неудачи. Из этих «магнитных бутылей» плазма вытекала, словно молоко из дырявых пакетов. Рукотворное солнце не зажигалось… Этот путь дал лишь опыт, понимание трудностей задачи, но не практический результат.


Еще от автора Ирина Львовна Радунская
«Безумные» идеи

Книга И. Радунской «„Безумные“ идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания. О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «„Безумные“ идеи». Книга «„Безумные“ идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки.


Джунгли

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Проклятые вопросы

В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных.


Крушение парадоксов

Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.


Превращения гиперболоида инженера Гарина

Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.


Четыре жизни академика Берга

К ЧИТАТЕЛЯМКнига, которую вы держите в руках, это не история с «воскрешениями» и «перерождениями». Это история жизни реального человека в реальном мире. Но для современного молодого читателя она может показаться действительно «потусторонней».Жизненный путь нашего героя от русского офицера-подводника, впоследствии краснофлотца, до выдающегося советского ученого пришелся на годы, когда наша родина, преодолевая неимоверные трудности, превращалась в могучую мировую державу — Союз Советских Социалистических Республик.Завеса времени, отделяющая нынешнюю Россию от той страны, чьей наследницей она является, не так уж и велика.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.