Кванты и музы - [33]
Новые факты требовали осмысления и теоретического анализа. Первым рассчитал профиль светового пучка, самоканализирующегося под влиянием высокочастотного эффекта Керра, молодой физик из Горького, теперь уже профессор, Таланов.
Таланов принадлежит к третьему поколению замечательной советской школы физиков, основанной академиками Мандельштамом и Папалекси. Эта школа прославила нашу страну крупнейшими открытиями в области нели нейной теории колебаний, радиофизики, оптики и многими другими. В третье поколение входят академики Гапонов, Гинзбург и создатели квантовой электроники академики Прохоров и Басов, начинавший свою научную работу под руководством Прохорова, но бывший первоначально учеником академика Тамма, сотрудника Мандельштама. Ко второму поколению этой школы относятся такие выдающиеся учёные, как академики Андронов и Леонтович.
Пусть читатель простит меня за этот экскурс в научную генеалогию. Она здесь совсем нелишняя. Ведь мало где преемственность поколений выступает так отчётливо, как в науке.
А теперь ненадолго перейдём к истории и упомянем о географии.
В годы первой пятилетки наш народ начал поход за большую науку. Расширялись старые научные центры, создавались новые. Один из них был заложен на Волге в старом промышленном городе Горьком. Школа Мандельштама послала туда крепкое ядро. В него вошли талантливые молодые физики Андронов, Горелик, Грехова и другие. Они поддержали и умножили традиции школы. И, в свою очередь, вырастили поколение учеников. К ним и относится Таланов.
Прежде чем заняться теорией самоканализирующихся световых пучков, Таланов успел внести существенный вклад в нелинейную теорию колебаний и в теорию распространения электромагнитных волн. Самоканализация электромагнитных волн — один из типичных примеров того, как нелинейности среды определяют наиболее существенные черты наблюдающихся в ней явлений. Здесь Таланов был во всеоружии. Его теория была построена для распространения интенсивного пучка электромагнитных волн в плазме. Но в ней полностью содержалась оценка и описание любой аналогичной ситуации. Она была словно специально создана, чтобы нарисовать основную картину явления — формирование волноводного канала в любой среде, где ка нал может поддерживаться действием самого поля. Это касалось и «нашего» случая — с лучом лазера.
Впоследствии Таланов углубил общую теорию этого явления, получил ряд новых важных результатов. Но о них позже. Теперь мы должны пересечь океан.
Одновременно с работой Таланова в журнале «Письма в Физические обозрения», печатающем только те статьи, которые и автор и редактор считают срочными, появилась статья Чао, Гармайр и Таунса «Самофокусировка луча оптического мазера». Американский физик Таунс, один из творцов квантовой электроники и мазера, не применяет слово «лазер», предпочитая ему сочетание «оптический мазер». Не наше дело обсуждать терминологические споры. Мне они кажутся лишёнными глубокого смысла. Ведь лазер и оптический мазер означают одно и то же.
Статья начиналась так: «Ниже мы рассмотрим условия, при которых электромагнитный луч создаёт себе диэлектрический волновод и распространяется не дифрагируя». Авторы не были знакомы с работой Аскарьяна, но позднее, узнав о ней, признали его приоритет. В отличие от Таланова, рассмотревшего в своей первой работе лишь движение электромагнитной волны в плоском канале, они рассчитали цилиндрический канал, возникающий в подавляющем большинстве опытов с лазерами. Их короткая статья содержит глубокое и ясное рассмотрение физической сущности двух процессов, способных вызвать самофокусировку и канализацию света, — электрострикции и керр-эффекта.
Таунсу и его сотрудникам удалось рассчитать, при какой мощности в данных условиях будет подавлена дифракционная расходимость луча и он окажется захваченным в канал. Правда, значение критической мощности было вычислено только при учёте электрострикции. Существенным ограничением явилось и то, что математические вычисления относились только к состоянию, при котором луч уже захвачен в канал. Как это произошло и возможен ли вообще процесс захвата — осталось за пределами математического рассмотрения.
Статья Таунса с сотрудниками стимулировала целый ряд исследований. Американец Келли, по-видимому, первым увидел процесс схлопывания первоначально параллельного пучка света и установил, на каком расстоянии после вхождения света в нелинейную среду происходит самофокусировка. Интересно, что, указывая на своих предшественников, Келли располагает их в таком порядке: Аскарьян, Таланов, Таунс с сотрудниками.
Келли получил свои главные результаты при помощи численных расчётов. Вскоре Таланов, а затем сотрудники Московского государственного университета Ахманов, Сухоруков и безвременно скончавшийся академик Хохлов опубликовали аналитическое решение той же задачи. Однако приближённые методы, которые пришлось применить для решения этой весьма сложной задачи, теряли силу вблизи точки схлопывания. Численное решение Келли тоже не говорило ничего о том, что же происходит с пучком вблизи точки схлопывания и за ней.
Книга И. Радунской «„Безумные“ идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания. О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «„Безумные“ идеи». Книга «„Безумные“ идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В науке, как и в искусстве, есть ряд вопросов, вечных вопросов, над которыми бьются поколения учёных. Они называют их проклятыми вопросами. Познаваем ли мир? Может ли разум овладеть секретами природы? Что есть истина? Можно ли запланировать открытия? Как стимулировать в человеке творческое начало? Что усиливает творческую отдачу?В книге Ирины Радунской «Проклятые вопросы» читатель встретится с разнообразными научными проблемами. Узнает, как возникли многие новые науки и насколько углубились и расширились рамки старых; как меняются аспекты и задачи ядерной физики и космологии, физики элементарных частиц и лазерной техники, нелинейной оптики и спектрального анализа; какие перемены в нашу жизнь внесут высокотемпературные сверхпроводники; что за секреты скрываются в недрах сверхновых звёзд; как влияют достижения физики ядерного магнитного резонанса на прогресс медицины.А главное, читатель узнает, как учёные приходят к открытиям, какой ценой достаются прозрения тайн природы.В этой книге, как в своих прежних книгах «Безумные идеи», «Превращения гиперболоида инженера Гарина», «Крушение парадоксов», «Кванты и музы», «Аксель Берг — человек XX века», трилогии «Предчувствия и свершения» — («Великие ошибки», «Призраки», «Единство») и «Квинтэссенция», автор рассказывает о развитии идей, о перипетиях индивидуального и коллективного творчества учёных.
Мазеры и лазеры сделались не только орудием техники, но и скальпелем науки. Они помогли обнаружить столько неожиданных явлений, что ученым впору ринуться на штурм самых глубинных свойств материи.В книге рассказывается о работах академиков Николая Геннадиевича Басова и Александра Михайловича Прохорова в этой области.
Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.
К ЧИТАТЕЛЯМКнига, которую вы держите в руках, это не история с «воскрешениями» и «перерождениями». Это история жизни реального человека в реальном мире. Но для современного молодого читателя она может показаться действительно «потусторонней».Жизненный путь нашего героя от русского офицера-подводника, впоследствии краснофлотца, до выдающегося советского ученого пришелся на годы, когда наша родина, преодолевая неимоверные трудности, превращалась в могучую мировую державу — Союз Советских Социалистических Республик.Завеса времени, отделяющая нынешнюю Россию от той страны, чьей наследницей она является, не так уж и велика.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.