Квантовые миры и возникновение пространства-времени - [7]
Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.
Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое амплитудой, связанной с данным результатом. Так, амплитуда, с которой частица может оказаться в конкретной точке x>0, будет записываться как Ψ(x>0).
Вероятность получить такой результат при измерениях равна квадрату амплитуды.
Вероятность конкретного результата = |Амплитуда данного результата|>2
Это простое отношение называется правилом Борна в честь физика Макса Борна[2]. Часть стоящей перед нами задачи – разобраться, откуда в мире взялось такое правило.
Совершенно определенно следующее: мы не утверждаем, что есть электрон, обладающий некоторой координатой и скоростью; мы попросту не знаем этих значений, и эта наша неосведомленность как раз заключена в волновой функции. В этой главе мы ничего не говорим о том, что «есть», а отмечаем лишь то, что мы наблюдаем. В следующих главах я вообще стану упирать на то, что волновая функция – это и есть истинная сумма свойств реальности, а такие идеи, как скорость и координата электрона, – всего лишь характеристики, которые мы в силах измерить. Но не все разделяют эту точку зрения, поэтому пока постараемся сохранять беспристрастность.
Давайте сопоставим правила классической и квантовой механики и сравним их. Состояние классической системы описывается координатами и скоростью всех движущихся в ней элементов. Чтобы проследить ее эволюцию, представим себе примерно следующую процедуру:
Правила классической механики
1. Подготавливаем систему, фиксируя конкретные координаты и скорость для каждой из ее частей.
2. Следим за эволюцией системы в соответствии с ньютоновскими законами движения.
Вот и все. Дьявол, естественно, в деталях. В некоторых классических системах движущихся элементов очень много.
В свою очередь, в типичном учебнике по квантовой механике описание правил дается в двух частях. В первой части имеем структуру, строго эквивалентную той, что представлена в классическом случае. Квантовые системы описываются волновыми функциями, а не координатами и скоростями. Точно как в классической механике ньютоновские законы движения управляют эволюцией состояния системы, в квантовой системе есть уравнение, описывающее, как эволюционирует волновая функция. Оно называется уравнением Шрёдингера. Уравнение Шрёдингера можно сформулировать так: «Скорость изменения волновой функции пропорциональна энергии квантовой системы». Чуть более строгая формулировка такова: волновая функция может описывать состояния с различными энергиями, и, согласно уравнению Шрёдингера, высокоэнергетические части волновой функции эволюционируют стремительно, а низкоэнергетические – очень медленно. Что, если подумать, вполне логично.
Для наших целей важно лишь то, что существует уравнение, позволяющее спрогнозировать, как волновые функции гладко[3] эволюционируют с течением времени. Эта эволюция столь же неизбежна и предсказуема, как и движение тел в соответствии с законами Ньютона в классической механике. Пока – ничего экстраординарного.
Правила квантовой механики (часть первая)
1. Подготавливаем систему, фиксируя конкретную волновую функцию Ψ.
2. Далее система эволюционирует согласно уравнению Шрёдингера.
Пока все нормально – эти элементы квантовой механики строго соотносятся с их классическими предшественниками. Вот только правила классической механики на этом заканчиваются, а в игру вступают дополнительные правила квантовой.
Все эти дополнительные правила связаны с измерением. Измеряя, например, спин или координату частицы, мы, согласно квантовой механике, в любом случае получим лишь определенные, возможные в данном случае результаты. Конкретный результат спрогнозировать не выйдет, но можно рассчитать вероятность получения каждого из возможных результатов. После того как измерение будет выполнено, волновая функция коллапсирует, превращаясь в совершенно новую функцию, в которой все вероятности сконцентрированы вокруг именно того результата, который вы только что получили. Таким образом, измеряя квантовую систему, максимум, на что вы можете рассчитывать – это возможность спрогнозировать вероятность различных ее результатов. Но если вы сразу повторите измерение той же самой величины, то раз за разом будете получать один и тот же результат – волновая функция сколлапсировала в него.
В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.
Как работает жизнь? Как природа знает, сколько зебр и львов должно жить в саванне или сколько рыб должно плавать в океане? Откуда наш организм знает, сколько эритроцитов должно быть в крови? Шон Кэрролл – американский биолог, ведущий специалист в области эво-дево – рассказывает нам невероятно интересную историю открытий. Сокровенные тайны природы – законы, которые управляют количеством клеток в наших телах, животных и растений в дикой природе. Самое удивительное в этих правилах то, что они похожи и подчиняются одной логике – логике жизни.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
Как выглядела Земля в разные периоды? Можно ли предсказать землетрясения и извержения вулканов? Куда и почему дрейфуют материки? Что нам грозит в будущем? Неужели дожди идут из-за бактерий? На Земле будет новый суперконтинент? Эта книга расскажет о том, как из обломков Большого Взрыва родилась наша Земля и как она эволюционировала, став самым удивительным местом во Вселенной – единственной известной живой планетой. Ведущие ученые и эксперты журнала New Scientist помогут ближе познакомиться с нашими домом, изучить его глубины, сложную атмосферу и потрясающую поверхность.В формате PDF A4 сохранен издательский макет книги.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.