Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт - [7]
[Этот съезд] позволит прийти к согласию в определении важных химических понятий, которые выражаются словами «атом», «молекула», «эквивалентность», «атомный» и «базовый», [...] а также установить единые обозначение и номенклатуру.
Приглашение на Съезд в Карлсруэ
Съезд в Карлсруэ в 1860 году стал первой международной встречей химиков в истории и имел чрезвычайную важность для развития химии как научной дисциплины. Алхимия всегда была особым знанием, передаваемым из уст в уста практически по секрету. Характеристика материальных веществ в зависимости от их свойств делала материю чем-то таинственным и закрытым, и это знание было доступно немногим. С появлением точных весов химические вещества стали классифицироваться по их массе, а не по свойствам. Но чтобы говорить об атомных массах, нужно было иметь базовую единицу, которая стала бы единой для всех лабораторий. Без нее научное общение и сравнение результатов оказались бы невозможными. Именно эта задача была решена в Карлсруэ: ученые высказались за систему измерений, в которой атомная масса углерода равнялась 12, а кислорода — 16.
Определение атомной массы — нелегкий процесс, поскольку атомы не видны и их также нельзя измерить по отдельности. Дальтон считал, что каждое химическое вещество состоит из особенного типа атомов, отличающегося от остальных веществ. Допустим, если назначить массу 1 атому водорода, то на основе измерения массы сложных веществ в составе с водородом можно вывести массу других веществ. Так, например, если вода состоит из водорода и кислорода и весит в восемь раз больше, чем масса чистого водорода, то логично предполагать, что атомная масса кислорода — 8.
Итальянский ученый Амедео Авогадро (1776-1856) предложил другой метод определения атомной массы, основанный на измерении объемов газов, которые вступают в реакцию. С другой стороны, Луи Жозеф Гей-Люссак (1778-1850) заметил, что в реакциях между газообразными веществами пропорции объемов, вступающих в реакцию, всегда простые — 1:1, 2:1 или 3:1. Например, в случае с водой два объема водорода приходятся на каждый объем кислорода. Авогадро предположил, что число молекул каждого объема газа всегда одно и то же, независимо от типа газа. Это единственная гипотеза, совместимая с наблюдениями Гей-Люссака. Однако если это так, то реакция для образования воды — уже не соединение одного атома водорода с одним атомом кислорода, а двух с одним. То есть масса кислорода приближается к 16, это в два раза больше, чем предлагал Дальтон.
Один объем кислорода вступает в реакцию с двумя объемами водорода, и получается два объема воды. Если гипотеза Авогадро об одинаковом числе молекул одинакового объема газов верна, то кое-что не сходится. Один объем кислорода дает два объема воды, то есть каждая молекула кислорода дает две молекулы воды. Это возможно, только если молекулы чистого кислорода состоят из двух атомов кислорода и каждый из них дает одну молекулу воды. Все это абсолютно очевидно сегодня, когда мы привыкли говорить о воде как об Н>20, но в начале XIX века это было рискованное предположение.
Гипотезы Авогадро не были широко известны, пока Станислао Канниццаро (1826-1910) вновь не озвучил их на Съезде в Карлсруэ. И вот оказалось возможным составить новую систему атомных масс и одновременно ввести различие между элементом, молекулой и атомом. Это разделение оказалось ключевым в работе Дмитрия Менделеева (1834-1907). В 1867 году Менделеев получил должность профессора химии Санкт-Петербургского университета и читал общую химию студентам первого курса. Однако он столкнулся с отсутствием книг на русском языке, в которых были бы изложены новшества, введенные на Съезде в Карлсруэ, так что Менделеев решил написать собственный трактат. В середине XIX века сделать это было непросто. Было известно 63 химических элемента, и требовалось найти какой-нибудь способ классифицировать их. Менделеев не был удовлетворен обычной классификацией в соответствии с химическими свойствами и сделал ставку на классификацию химических элементов в зависимости от их атомной массы.
В двухтомнике «Основы химии*, написанном Менделеевым в 1868 и 1869 годах, довольно четко прослеживается развитие его мысли в тот период. Вначале классификация элементов в соответствии с массой была дидактическим инструментом. Но работая над вторым томом, Менделеев обратил внимание, что свойства элементов тесно связаны с позицией, которую они занимают в этой классификации. Упорядочивание по возрастанию масс также открывало определенную модель, в которой химические свойства повторялись. Если по горизонтали порядок выражал рост массы, то по вертикали приводились основные химические свойства.
Периодическая таблица в том виде, в каком Менделеев опубликовал ее в 1871 году. Химик включил известные на тот момент элементы и оставил свободные места, которые понадобились для открытых в дальнейшем веществ, поскольку каждая клетка соответствует элементу с определенными свойствами.
Сегодня периодическая таблица элементов есть во всех химических аудиториях, лабораториях, учебниках для средней школы... Это упорядочивание символов по рядам и столбцам дает, даже на первый взгляд, много информации о химических свойствах элементов. Только зная, в каком месте таблицы находится конкретное вещество, мы определяем, является ли оно металлом, благородным газом, щелочным веществом и так далее. Положение элемента в таблице также предоставляет данные о распределении электронов на периферии атомов.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.