Криптографические приключения: таинственные шифры и математические задачи - [12]

Шрифт
Интервал

Я сказал:

— Это минимальная единица кодирования информации, возможная на устройстве.

Отец кивнул и продолжил:

— Какой самый простой способ кодирования можно создать, используя длительность включения сигнала?

Я предложил:

— Можно каждой букве дать номер от 1 до 33, а пробел пусть будет 34, и тогда можно передавать буквы по номерам, а сам номер кодировать длительностью сигнала в секундах.

Отец одновременно улыбнулся и укоризненно покачал головой:

— Ты прекрасно знаешь, что пробел в сообщениях встречается чаще всего, так что использовать для его кодирования число 34 просто неэкономно. Это во-первых. Во-вторых, а так ли уж нужен пробел?

Действительно, ведь при помощи шифромашины мы с Марком передавали сообщения без пробелов. Тем временем отец продолжил:

— Но проблема даже не в этом. Нужно будет очень точно отмерять секунды, а при длинной передаче внимание оператора наверняка собьётся, и декодировать сигнал будет трудно. Давайте придумаем что-то более компактное и удобное для распознавания. Екатерина, ты знакома с двоичной системой счисления?

— Нет.

— Хорошо. Тогда как ты думаешь, почему мы считаем до десяти, то есть почему используем для записи чисел десять цифр от 0 до 9?

— Наверное, потому, что у нас десять пальцев на руках.

— Ты права, есть такая гипотеза. Но если подумать, то число «10» ничем не лучше и не хуже других чисел. Просто мы привыкли, что у нас именно десять цифр. А что получится, если использовать только две цифры: 0 и 1?

Катя нахмурилась. Я уже знал об этой системе, поэтому дал своей знакомой возможность поразмыслить самостоятельно. Она думала, но, видимо, в голову ничего не приходило. Тогда папа обратился ко мне, и я уже не упустил возможности покрасоваться. Я взял лист бумаги и написал в столбик:


0 = 0

1 = 1

2 =…


— Как получить 2? Нам надо к 1 прибавить ещё 1. Правила сложения очень простые:


0 + 0 = 0

0 + 1 = 1

1 + 1 = 10


— Почему это 10?

— Смотри. У нас есть только две цифры. Цифра 1 — последняя в ряду (как цифра 9), поэтому, если прибавить к ней единицу, произойдет перенос разряда, так же как если к девяти прибавить один. Но можно просто запомнить эти правила и не задумываться.

Отец блаженно улыбался, слушая моё объяснение. Похоже, этого он от меня и ожидал. Ободрённый, я спросил Катю:

— Теперь ты можешь сказать, как записать «3»?

Катя подумала и сказала, что «3» надо записывать как «11». Я подтвердил, что это абсолютно правильно, и сразу же спросил, как записывать «4». Но тут уже возникли сложности, и пришлось объяснять, как происходит перенос разряда и почему в итоге получается «100». После этого мы записали двоичные числа до 31 (так попросил папа).

Тем временем папа рассказал нам, как из двоичной записи числа перейти к десятичной. Оказалось, что каждому разряду соответствует степень двойки: 1 (20), 2 (21), 4 (22), 8 (23), 16 (24), 32 (25), 64 (26), 128 (27), 256 (28), 512 (29), 1024 (210) и т. д. Нужно взять те степени, которым в записи двоичного числа соответствуют единицы, а потом сложить их. Например, двоичному числу 10111 соответствует десятичное 16 + 4 + 2 + 1 = 23.

Затем папа сказал, что в математике числа «0» и «1» называются битами и что любую информацию можно представить при помощи битов. После этого мы наконец перешли к разработке системы кодирования.

Папа составил таблицу из трёх столбцов. В первый он выписал все буквы русского алфавита, пропустив букву Ё. Во втором записал их номера (от 0 до 31). А в третий столбец он записал те же номера в двоичном представлении, но каждый номер состоял из пяти битов — от 00000 до 11111. Получилось вот что:

— Теперь договоримся, как передавать биты 0 и 1. Тут можно использовать и метод Морзе. Пусть «0» будет коротким сигналом, а «1» — длинным, раза в три длиннее. При этом между каждым сигналом надо делать небольшую паузу, а между буквами, то есть между каждыми пятью сигналами — паузу подлиннее.

Отец взял мой передатчик и попросил записывать за ним. Мы взяли карандаши, а папа стал выбивать последовательность сигналов: длинный, короткий, короткий, длинный, короткий… Я записывал за ним: 10010 00101 01011 00101 00011 10000 00000 10100. Получилось слово «ТЕЛЕГРАФ».

Мы ещё немного потренировались — я выстукивал слова, Катя записывала, потом наоборот. Вроде бы всё понятно и довольно просто. Потом папа сказал:

— Ну вот, я хотел начать с протокола, а потом перейти к кодированию, а получилось наоборот. Давайте же изучим, что такое протокол. Скажи, Екатерина, как ты поймёшь, что надо начинать записывать передачу Кирилла?

— Я услышу звонок и увижу мигающую лампочку.

— Но ведь ты наверняка в этот момент будешь что-то делать, а карандаша и бумаги рядом не окажется. А может быть, и самой тебя поблизости не будет. Как быть?

Мы задумались. А ведь действительно. Чтобы успешно передать сообщение, нам обоим надо быть около своих устройств, но как это сделать, если мы друг друга не видим? Но отец продолжил:

— Нам на помощь придёт протокол. Протокол — это договорённость о том, как вести передачу информации. Метод кодирования — только часть протокола. Также протокол устанавливает правила начала и окончания передачи. Ещё он может устанавливать правила смены передающей стороны и даже методы восстановления информации, если передача происходит с потерями и ошибками. Но мы пока изучим только самые простые вещи.


Еще от автора Роман Викторович Душкин
Шифры и квесты: таинственные истории в логических загадках

У всех иногда бывает так, что и делать ничего не хочется, и скука смертная одолевает, и каждый день повторяет предыдущий… Но вдруг в размеренной жизни появляется таинственный чемодан с шифровым замком без ключа – и приключения начинаются!Для начала нужно подобрать шифр, затем – разгадать тайное послание, найти и собрать ключи к целой закодированной матрице, а потом даже самостоятельно сделать шифровальную машину и найти настоящий клад! Кто сказал, что такая жизнь скучна и неинтересна? Ведь вас ждет увлекательный квест по миру криптографии – настоящей науки о невозможности прочтения информации теми, кто о ней знать не должен.Хотите быть посвященными в математические тайны и самостоятельно разгадывать, а главное – создавать затейливые шифры? Попробуйте пройти этот квест вместе с главным героем – вдруг вы докопаетесь до истины раньше?


Математика и криптография : тайны шифров и логическое мышление

Хочешь научиться хранить свои тайны, создавать зашифрованные послания и удивлять одноклассников познаниями в криптографии — науке о создании, использовании и взломе шифров? В этой книге тебя ждёт знакомство с тайными знаниями и умениями, которые доступны только избранным — шпионам, секретным агентам, учёным. Вместе мы научимся кодировать сообщения, используя разные методы шифровки, разгадывать уже существующие тайные послания, делать шифровальные машины и даже создавать свои оригинальные шифры и загадки! У тебя есть уникальная возможность познакомиться с реальным миром тайных агентов и спецслужб, ведь все методы шифрования, описанные в книге, используются до сих пор! А вдруг ты сможешь создать свой уникальный метод шифровки?


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Звездный витамин

Сказки - это всегда про Иванушек-дурачков и Змеев Горынычей? А вот и нет! Перед вами - книга очень необычных научных сказок, основанных на реальных событиях. Юный читатель узнает: о жестокой битве австралийских мух и жуков; об Эйнштейне, который сумел затормозить время; о создании самого большого в мире телескопа и другие сказочно увлекательные истории о великих людях и открытиях, изменивших наш мир навсегда.


Русский язык на пальцах

Русский язык – один из самых сложных языков мира! В нем огромное количество правил и еще больше исключений. Запомнить их все очень сложно, а бессмысленное заучивание правил навевает скуку и тоску. Новая книга серии поможет понять основные законы русского языка и повысить свою грамотность без скучной зубрежки. На примере невероятно увлекательных текстов, читатель сможет проникнуть в тайны нашего родного языка. А великолепные примеры сделают правила более понятными.


Эволюция на пальцах

Хотели бы вы снова от звонка до звонка 10 лет отсидеть за школьной партой? Вряд ли… Школа запихивает в голову огромную кучу знаний, только вот раскиданы они беспорядочно и поэтому остаются невостребованными. Что вот вы помните из школьной программы про теорию эволюции? Обезьяны, Дарвин, гены… Эх, невелик набор, да и системы в нем нет. Эта книга знакомит детей и родителей, которые хотели бы рассказать своим детям о мире, с понятием эволюции. Причем речь идет не только о биологической эволюции, чего, наверное, можно было бы ожидать.


Физика на пальцах

Понимаете ли вы теорию Стивена Хокинга и теорию относительности?Знаете ли и сможете ли доступно объяснить основы квантовой физики?Расскажете об открытии Марии Склодовской-Кюри?Хотите понять самую модную науку XXI века?Неважно, учитесь ли вы в школе или уже давно закончили ее. Если вы любознательный человек, то эта книга ДЛЯ ВАС!САМАЯ ГЛАВНАЯ НАУКА – ЭТО ФИЗИКА! Так начинает эту книгу известный публицист, популяризатор теоретической науки Александр Никонов.