Краткая история сотворения мира. Великие ученые в поисках источника жизни на Земле - [85]

Шрифт
Интервал

Карл Вёзе решил прояснить ситуацию. В 1969 г. он написал Френсису Крику удивительное письмо – своего рода план того, что Вёзе собирался сделать в последующие 20 лет и что он надеялся получить (и в конечном итоге получил). Вёзе писал Крику, что планировал использовать ДНК для выявления, как он выразился, «внутренних палеонтологических летописей», указывающих на истинные родственные связи между организмами. «Выявляя предковые последовательности генов, можно надеяться увидеть следы эволюции клеток». Он осознал возможность использовать генетический код для заполнения пробелов в наших знаниях о ранних этапах эволюции, которые не удается заполнить с помощью палеонтологических данных. Он планировал секвенировать ген (то есть определить его полную нуклеотидную последовательность), являющийся общим практически для всех живых существ, а затем на основании его вариаций воссоздать историю эволюции.

К началу 1960-х гг. процесс секвенирования белков (определения последовательности аминокислот в молекуле белка) превратился в рутинный анализ. Эмиль Цукеркандль и Лайнус Полинг выделяли белки из современных организмов, которые можно было разместить на филогенетическом дереве. Они показали, что степень различия белковых последовательностей зависела от того, насколько давно разошлись соответствующие виды организмов в соответствии с палеонтологическими данными. Измеряя различия между белковыми последовательностями из разных источников, можно рассчитать, как давно организмы разошлись от общего предка (ученые называют это принципом «молекулярных часов»).

Однако не все белки встречаются во всех организмах. Вёзе нужно было найти что-то, что содержалось в клетках всех известных организмов, копировалось с высокой точностью и подвергалось мутациям достаточно редко, чтобы можно было проследить за изменениями за несколько миллиардов лет. Он выбрал гены рибосомной 16S РНК (сокращенно 16S рРНК), названной так в соответствии со скоростью ее осаждения при центрифугировании. Гены 16S рРНК достаточно длинные, так что с их помощью можно получить подробную информацию, но не слишком длинные, и поэтому их не очень сложно секвенировать.

К моменту начала работы по секвенированию Вёзе ушел из лаборатории General Electric и оказался в Иллинойском университете в Урбана-Шампейне по приглашению молекулярного биолога Сола Шпигельмана, который когда-то присутствовал на лекции Вёзе в Институте Пастера в Париже. В Иллинойсе Вёзе руководил небольшой группой исследователей, самым талантливым из которых был Джордж Фокс, принимавший активное участие во всех самых важных открытиях научной группы. Вместе они начали сложный процесс секвенирования генов 16S рРНК.

Все анализы приходилось делать вручную – автоматические секвенаторы появились лишь спустя несколько десятилетий. Вёзе с сотрудниками выбрали метод, предложенный в 1965 г. британским биохимиком Фредериком Сенгером – одним из немногих ученых, дважды удостоенных Нобелевской премии. Процедура предполагала ферментативное разделение генов РНК на небольшие фрагменты, с которыми проще было работать. Потом фрагменты подвергали секвенированию, а затем восстанавливали всю молекулу и определяли полную нуклеотидную последовательность. Процедура была дорогой, и Вёзе обратился за финансовой поддержкой в программу НАСА по астробиологии. Работа была чрезвычайно медленной и кропотливой. Поначалу на секвенирование одного гена 16S рРНК уходили месяцы. Большинству ученых такая работа показалась бы невероятно занудной, но Вёзе она нравилась – это было похоже на сборку гигантского пазла.

К весне 1976 г. группа Вёзе определила полные нуклеотидные последовательности 16S рРНК широкого круга бактерий. Далее ученые переключили внимание на одну особую группу микробов, называемых метаногенами. Эта очень необычная группа микроорганизмов получила название в связи со способностью производить метан в качестве побочного продукта при переработке углекислого газа и молекулярного водорода, из которых эти микробы получают энергию. На основании внешних признаков ученые считали метаногенов особой группой бактерий, однако произведенный Вёзе генетический анализ показал, что это вовсе не бактерии. Вёзе понял, что его исследования полностью перевернули основы биологической таксономии. Выяснилось, что самых древних ветвей на дереве жизни было не две (эукариоты и прокариоты), а три и все они отделились от корня на самых первых этапах развития жизни.

Вёзе назвал новую группу организмов архебактериями, но позднее их стали называть просто археями, что означает «древнейшие». Далее он начал перестраивать дерево жизни. На рисунке Вёзе все, что составляло дерево Дарвина, оказалось лишь одной ветвью нового дерева. В завершенном виде дерево было больше похоже на сложную несимметричную снежинку с тремя ветвями, отходившими от общего ствола в разных направлениях. Вёзе назвал эти три основных направления доменами. В кругах микробиологов это открытие назвали «революцией Вёзе».

В 1977 г. Вёзе, Фокс и НАСА объявили в прессе об открытии домена архей; по времени объявление совпало с публикацией соответствующей статьи в журнале Proceedings of the National Academy of Sciences. Новость была воспринята с недоверием и даже гневом. Усугубляло ситуацию еще и то, что Вёзе обладал репутацией чудаковатого затворника, занимающегося непонятными вещами. Некоторые считали, что его данные слишком фрагментарны для построения филогенетического дерева, а кто-то даже полагал, что Вёзе слегка тронулся умом. Один из самых влиятельных эволюционных биологов XX в. Эрнст Майр, ставший самым яростным критиком Вёзе, сообщил корреспонденту газеты New York Times, что работа Вёзе – полная бессмыслица. Вёзе обычно защищался от критики тем, что писал письма редакторам, но это слабо помогало. Его даже не пригласили на первую серьезную научную конференцию, посвященную обсуждению его теории. Впрочем, возможно, даже получив приглашение, он не приехал бы.


Еще от автора Билл Меслер
Иллюзия правды. Почему наш мозг стремится обмануть себя и других?

Люди врут. Ложь пронизывает все стороны нашей жизни – от рекламы и политики до медицины и образования. Виновато ли в этом общество? Или наш мозг от природы настроен на искажение информации? Где граница между самообманом и оптимизмом? И в каких ситуациях неправда ценнее правды? Научные журналисты Шанкар Ведантам и Билл Меслер показывают, как обман сформировал человечество, и раскрывают роль, которую ложь играет в современном мире. Основываясь на исследованиях ученых, криминальных сводках и житейских историях, они объясняют, как извлечь пользу из заблуждений и перестать считать других людей безумцами из-за их странных взглядов.


Рекомендуем почитать
Пруст и кальмар. Нейробиология чтения

Как мы учимся читать? Мозг каждого нового читателя – ребенка, который только приступил к наработке этого навыка, – обладает необычайным свойством выходить за пределы своих первоначальных способностей, чтобы понимать письменные символы. В течение тысячелетий с того момента, как человек научился читать, произошла настоящая интеллектуальная эволюция всего нашего вида. Мозг у того, кто разбирает клинопись шумеров на глиняных табличках, функционирует иначе, чем у того, кто читает алфавиты, и уж тем более чем у того, кто знаком с новейшими технологиями.


Большая энциклопедия народных методов самолечения

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Язык и мозг. Нейробиология раскрывает главную тайну человека

Почему из всех живых существ на Земле говорят только люди? Как и когда появился язык? Почему малыши с лёгкостью усваивают родной язык? Где в мозге находится язык? Ответы на эти вопросы человечество ищет с древних времён. Человеческая способность говорить оставалась тайной за семью печатями до второй половины XIX века, когда неврологи Поль Брока и Карл Вернике впервые обнаружили в мозге центры речи. Сегодня с помощью современных технологий учёные могут увидеть, как работает живой мозг. Сотрудничество нейробиологов, психологов и лингвистов позволило узнать с точностью до миллисекунд, где и что происходит в мозге, когда человек говорит.


Теория объектных отношений. Лекции (неизданные)

Теория объектных отношений – это психоаналитическая теория личности и ее развития, рассматривающая в качестве ведущего источника человеческих мотиваций не потребность в разрядке инстинктного напряжения (напряжения, создаваемого влечениями, в том числе сексуального напряжения), а потребность в отношениях. Эта теория рассматривает развитие личности как процесс переработки опыта отношений субъекта со «Значимыми Другими» (другими людьми). В основе наиболее тяжелых патологий (шизофрения, психотические расстройства вообще, пограничные расстройства, психосоматические расстройства) лежат нарушенные или патологически искаженные отношения ребенка с окружающими людьми.


Величайшие в мире злодеи

Книга Н. Бландфорда и Б. Джонса «Величайшие в мире злодеи» содержит истории жизни тиранов всех времен — таких, как А. Гитлер, И. Сталин, Пол Пот, Иди Амин. Авторы пытаются объяснить мотивы ужасных преступлений, которые когда-либо совершались в мире, а также известную теорию жестокости маркиза де Сада, лежащую в основе преступлений современных вампиров и каннибалов.


Безпозвоночныя Бѣлаго моря

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.