Красота в квадрате - [13]
Тенденцию к преобладанию чисел, начинающихся с единицы, впервые заметил американский астроном канадского происхождения Саймон Ньюком [2]. В 1881 году он опубликовал в журнале American Journal of Mathematics краткую заметку, в которой объяснял, что выявил данную особенность благодаря книгам с логарифмическими таблицами. Первые страницы с таблицами логарифмов для чисел, начинающихся с цифры 1, всегда были более истрепаны, чем страницы с таблицами для чисел, начинающихся с цифры 9. Подобный феномен уж точно не объяснишь тем, что исследователи якобы внимательно читали первые страницы книги, а затем теряли к ней интерес из-за отсутствия захватывающего сюжета. Здесь причина в другом: они чаще сталкивались в работе с числами, начинающимися с единицы. Ньюком предположил, что частотность первых цифр чисел, выраженная в процентах, примерно такова.
Частота наличия цифры 1 в начале чисел составляет 30,1 процента, цифры 2 — 17,6 процента, цифры 3 — 12,5 процента, причем этот показатель стремительно падает по мере увеличения цифры: шанс встретить цифру 1 в начале чисел в семь раз превышает подобную вероятность по отношению к цифре 9.
Ньюком рассчитал эти показатели с помощью логарифмов. Он утверждал, что вероятность появления цифры d в начале числа определяется по формуле: log(d + 1) – log d. (В Приложении 1 я объясню ее суть.) Однако он не смог четко обосновать ее, поэтому привел вместо этого неформальный аргумент, просто представив его как некую любопытную тенденцию.
Более чем полвека спустя, в 1938 году, физик из General Electric Фрэнк Бенфорд заново открыл феномен первой цифры, тоже обратив внимание на потрепанность страниц в книгах с таблицами логарифмов (по всей вероятности, он не знал о статье Ньюкома) [3]. Однако Бенфорд проанализировал эту закономерность не только на основании книг с логарифмами. Он изучил распределение первых цифр исходя из таких данных, как население городов США, адреса первых нескольких сотен людей из биографического справочника американских ученых American Men of Science, атомный вес химических элементов, площадь бассейна рек и статистика бейсбольных матчей. В большинстве случаев результаты были близки к ожидаемому распределению. Наверное, было очень интересно наблюдать за тем, как одна и та же последовательность возникает в самых разных ситуациях. Разумеется, полученные показатели не были в точности такими, как представленные выше проценты (в реальном мире подобной точности нет). Тем не менее в целом они почти полностью совпадали с прогнозируемыми значениями, отклоняясь от них не более чем на несколько десятых процента. В настоящее время закон Бенфорда нашел свое подтверждение в самых разных областях, в том числе в естествознании, финансах, экономике и вычислительной технике. Этот закон гласит: в любом множестве данных о естественных произвольных процессах, включающем в себя величины нескольких порядков, частота появления цифры 1 в качестве первой значащей цифры составляет около 30 процентов, цифры 2 — около 18 процентов и т. д. Бенфорд считал, что этот феномен отражает универсальный закон, который он обозначил термином «закон аномальных чисел». Но термин не прижился, и открытие получило известность под названием «закон Бенфорда».
Закону Бенфорда подчиняется большинство множеств данных, взятых из реальной жизни, например численность населения в 3221 округе США и совокупный квартальный доход 30 525 открытых акционерных компаний за период с 1961 по 2011 год [4].
Закон Бенфорда — одна из самых замечательных числовых закономерностей, существующих в мире. Чуть ниже я остановлюсь на некоторых других, но, прежде чем перейти к ним, мы должны провести одно расследование.
Даррелл Доррелл напоминал мне медведя. Эта ассоциация отчасти объяснялась тем, что мы с ним встретились в Портленде, столице штата Орегон, в котором водится много медведей, и частично тем, что Даррелл был мужчиной коренастого телосложения, с торчащими усами и низким голосом, смахивающим на тихое рычание. Кроме того, ассоциация была связана с его работой финансового следователя. Даррелл вынюхивает искаженные данные с хищническим инстинктом гризли, добывающего себе пищу. Вам лучше не допускать его к своим бухгалтерским книгам, если в них есть хотя бы малейший намек на злоупотребления. ЦРУ, Министерство юстиции и Комиссия по ценным бумагам и биржам регулярно пользовались его услугами в области судебно-бухгалтерской экспертизы (этим отраслевым термином обозначается расследование финансовых махинаций). У Даррелла есть лицензия на ношение оружия. «Все двери здесь закрываются изнутри, — объяснял он. — Мы вызываем у многих людей недовольство».
Когда в начале тысячелетия Даррелл впервые услышал о законе Бенфорда, он испытал примерно те же эмоции, что и люди, пережившие большую утрату: удивление, отрицание, гнев и принятие. «Сначала у меня возникла мысль: “Почему я не слышал об этом раньше?” Затем я подумал: “Этого просто не может быть!” А когда в конце концов понял суть этого закона, на меня снизошло озарение: “Вот это да! Ведь это еще один инструмент, который можно использовать”». Теперь в ходе расследования финансовых махинаций Даррелл прежде всего проверяет первые цифры номеров банковских счетов и данных в бухгалтерских книгах компаний. Финансовые данные, включающие в себя величины нескольких порядков (другими словами, которые отражают количество, измеряемое в единицах продукции или в десятках, сотнях и тысячах долларов), должны подчиняться закону Бенфорда. Если этого не происходит, значит, либо существует обоснованное объяснение (например, регулярная закупка товаров стоимостью, скажем, 40 долларов за единицу, которая влечет за собой повышение вероятности появления цифры 4), либо имеют место преступные действия. Отклонение от закона Бенфорда — это признак того, что соответствующие финансовые данные требуют более тщательного анализа.
Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.