Коснуться невидимого, услышать неслышимое - [22]
Продолжим наше сравнение ультразвука, вернее — ультразвукового режима воздействия, с ключом, открывающим определенный замок, т. е. вызывающим активацию той или иной рецепторной или нервной структуры. Ключ может быть короче или длиннее, больше или меньше, открывать замок с одного или нескольких поворотов и т. п. Но во всех случаях он изготавливается из одной «болванки-ультразвука». В каждом режиме имеет значение место воздействия, включающее глубину от поверхности тела, объем и акустические свойства тканей, подвергающихся активации в фокальной области излучателя, а также расположенных по пути следования ультразвука от поверхности излучателя до фокальной области. Имеет значение частота ультразвука, интенсивность и длительность разового воздействия, необходимость однократного или многократного воздействий. В последнем случае бывает важна частота следования повторных включений и общее число стимулов.
Оптимальный режим может включать все или некоторые перечисленные компоненты, а также ряд других, здесь не указанных. Например, для активации тактильных рецепторов не важна частота ультразвука (в пределах диапазона 0.5—4 МГц), зато должна быть учтена амплитуда смещения среды в фокальной области, длительность стимулов, крутизна их переднего и заднего фронтов. Подробнее о тактильной рецепции будет рассказано дальше. Здесь лишь отметим, что минимальная длительность стимулов, при которых тактильные пороги будут самыми низкими, составляет 1—5 мс при условии, что стимулы прямоугольные по форме. Кроме того, пороги будут самыми низкими при частоте следования стимулов около 250 в секунду. Приведенный пример показывает также, что оптимальный режим воздействия может включать и такой критерий, как пороговая ответная реакция (порог тактильного ощущения).
Оптимальный режим — понятие совершенно конкретное по отношению к структуре, для которой выявляется возможность активации, или, следуя нашему сравнению, изготавливается ключ. Бывает, однако, ситуация, когда одним ключом можно открыть несколько замков. Действительно, обнаружены разные структуры, режимы активации которых весьма сходны. Но здесь мы вторгаемся уже в другую область — в изучение общих свойств различных органов чувств на основе сходства режимов активации.
Во всех исследованиях, когда применялись стимулы длительностью до 10 мс, тепловое действие ультразвука было настолько мало, что им можно пренебречь. Активация была связана с другими факторами, среди них — влияние знакопеременных колебаний ультразвуковой частоты. Природа влияния такого рода пока окончательно не ясна: могут иметь значение выделение биологически активных веществ, колебания собственных структур живых клеток, равно как и некоторые другие причины, о которых речь пойдет ниже.
Сопоставление с другими раздражителями
Когда с помощью ультразвука активируют те или иные структуры и регистрируют ответные реакции, будь то ощущения человека или электрические сигналы нервных единиц животных, возникает вопрос о сопоставлении ультразвукового влияния с действием адекватных раздражителей, т. е. тех естественных стимулов, на которые структуры приспособлены реагировать: тактильные ощущения обычно возникают при действии механических стимулов, вкусовые — химических и так далее.
Ультразвуковое воздействие по своей физической природе является механическим. Однако обычно механические колебания сопровождаются рядом других эффектов, зависящих от свойств биологических тканей в области воздействия, режимов ультразвуковой аппликации и пр. Речь идет, в частности, о выделении большего или меньшего количества тепла, биологически активных веществ, появления физико-химических эффектов, которые могут оказаться непосредственной причиной функционального влияния ультразвука.
Сопоставление ультразвука с адекватными раздражителями способствует выявлению действующих факторов ультразвукового стимула и места их приложения. Действующие факторы могут не совпадать по своей физической природе с адекватными раздражителями. Именно несовпадение зачастую открывает дополнительные возможности для изучения механизма адекватной стимуляции. Когда, например, было установлено, что действующим фактором ультразвукового стимула, определяющим появление ощущений тепла и холода, является механическое смещение, возник вопрос о его значении для температурной рецепции в естественных условиях. Результатом последующих исследований была новая гипотеза температурной рецепции (см. ниже).
При сравнении ультразвукового и адекватного (звукового) воздействий на слуховой лабиринт животных и человека оказалось, что место активирующего воздействия обоих раздражителей не одно и то же. Известно, что звуковые колебания, пройдя наружное и среднее ухо, активируют рецепторный слуховой аппарат лабиринта. При очень большой интенсивности звука иногда они одновременно могут активировать и вестибулярный аппарат, деятельность которого обеспечивает ощущение равновесия в пространстве. Раздражение звуком вестибулярного аппарата известно в клинике под названием феномена Туллио.
С помощью ультразвука тоже удается вызвать у человека слуховые ощущения, а у животных — электрические реакции в слуховых центрах мозга. А вот вестибулярных реакций получено не было. Ответы на ультразвук во многом похожи на реакции при естественной звуковой стимуляции. Но были обнаружены и различия. Именно различия позволили вначале предположить, а потом экспериментально доказать, что местом активации ультразвуком слуховой системы является не только рецепторный аппарат, но и проводниковые нервные структуры ушного лабиринта, а также волокна слухового нерва (см. ниже). Впервые установленная способность ультразвука активировать волоконные лабиринтные структуры и волокна позволила приступить не только к пересмотру существующих представлений о функции слухового рецепторного аппарата, но и к разработке новых способов диагностики различных заболеваний слуховой системы (глава 4). Появилась возможность «коснуться невидимого», заставить «звучать» ранее «немые» участки слуховой системы, чтобы выявить, здоровы они или больны, можно ли с помощью их активации пытаться восстановить утраченный или резко пониженный слух.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.
Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.
В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.
Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.