Коснуться невидимого, услышать неслышимое - [17]

Шрифт
Интервал

Из соображений, в основе которых лежит чисто биологический подход к проблеме отсечения или фильтрации части входной информации, представляется, что не должно быть таких процессов или механизмов, функция которых состояла бы в том, чтобы отклонять какой-либо стимул. Прецептивное научение и отбор — это позитивный процесс, в первую очередь определяемый выбором. В основе выбора — биологическая потребность, доминирующая мотивация, обученность (навык), инструкция. В изучении внимания при экспериментальных подходах, реализуемых с участием испытуемых, особую роль играет инструкция. Различные экспериментальные процедуры позволили показать, что даже при узко сфокусированном внимании периферическая сенсорная информация не блокируется — она поступает в центральные отделы, где не теряется, а оценивается с точки зрения ее адаптационного значения.

В качестве примера рассмотрим следующую экспериментальную ситуацию. Записанные на магнитную ленту два текста одновременно подаются испытуемому на разные уши с одинаковой громкостью. Предварительно дается инструкция о том, какой текст испытуемый должен слушать. Для проверки правильности исполнения инструкции испытуемый повторяет нужное сообщение по мере его поступления в ухо. Испытуемые легко выделяют нужное сообщение, полностью игнорируя другое, поступающее на противоположное ухо. Человек как будто не слышит второе, «ненужное» сообщение. Но если в тексте «ненужного» сообщения появляются слова, имеющие непосредственное отношение к испытуемому, типа его имени, обращения или важного эмоционального, особенно аффективного содержания, то испытуемый оценит также не только эти слова, но и в ряде случаев смысл второго сообщения.

Много остроумных экспериментов, показывающих, что акустический поток может в определенных условиях «не слышаться», но достигать высших центров мозга, было проведено за последнее десятилетие. Следует, однако, признать, что психологические интерпретации проблем, связанных с процессами и механизмами внимания, хотя и многочисленны, но в ряде случаев противоречивы. Нейрофизиологические аспекты этого вопроса пока еще не нашли должной экспериментальной и теоретической разработки.

Сенсорная стимуляция и ощущение

Первые попытки количественного определения соотношения между физическими параметрами стимула и вызываемым им ощущением относятся к 40-м годам прошлого столетия. В 1846 г. немецкий ученый Э. Вебер опубликовал работу, в которой сообщил, что величина прироста интенсивности, вызывающая отчетливую разницу в интенсивностях между двумя стимулами, находится в постоянном отношении к исходной интенсивности. Например, различия в весе двух грузов можно определить в том случае, если отношение их весов друг к другу составляет не меньше 29:30. В 1860 г. немецкий ученый Г. Фехнер, который считается основоположником специальной области сенсорной физиологии — психофизики, придал наблюдениям Вебера математическое выражение — ΔI/I = K, где ΔI — приращение раздражителя, при котором получается едва заметная разница в ощущении, а I — величина постоянная, представляющая собой исходную интенсивность раздражения. Иначе говоря, ощущение пропорционально логарифму раздражения. Установленное соотношение между величиной раздражения и ощущения в дальнейшем получило название закона Вебера—Фехнера, который длительное время являлся отправным пунктом психофизических исследований.

Впоследствии обнаружилось, что закон Вебера—Фехнера не подтверждается в том случае, когда используются очень малые или очень большие величины раздражителей. И почти через 100 лет американский ученый С. Стивенс предложил взамен отношения Вебера—Фехнера закон степенной функции, согласно которому ощущение пропорционально показателю степени, а именно, ощущение равно a(I—R)>x, где а — константа, величина которой зависит от единиц измерения, I — стимул, R — пороговый стимул, х — показатель степени. Последний меняется в зависимости от того, какая сенсорная система исследуется. Например, для раздражения светом он составляет 0.33, запахом гектана 0.6, для вкуса хлористого натрия — 1.3, для громкости звука 0.6, для электрического раздражения пальцев 3.5, для тактильной вибрации с частотой 60 Гц — около 1.

Графически вышеупомянутые зависимости для трех ощущений представлены на рис. 12. Показано также, что наклон функции на графике зависит, в пределах одной модальности, от параметров раздражителя (рис. 13). Например, показатель степени для вибраторной чувствительности меняется обратно пропорционально частоте вибрации, для яркости показатель степени тем больше, чем короче вспышка. На величину показателя влияет также наличие маскирующего стимула: чем выше шум, тем больше показатель степени.

Чем же определяются вариации показателей степени для различных органов чувств? Одно из возможных предположений состоит в том, что показатель степени отражает различия в механизмах преобразований внешней энергии в ту форму информации, которая доступна нервной системе. Если при превращении энергии света в генераторный потенциал должны уменьшаться различия в уровнях световой энергии, то при электрическом раздражении пальцев различия увеличиваются.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Энергия и жизнь

Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.


Старение и увеличение продолжительности жизни

Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.


Что произошло 600 миллионов лет назад

В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.


Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.