Коснуться невидимого, услышать неслышимое - [10]
Рис. 9. Соединение рецептора с окончанием нейрона (А) Электрические сигналы рецепторов и афферентных нейронов (Б).
Прерывистой линией показано возникновение электрического тока в результате действия стимула (I) и соответственно повышение ионной проницаемости рецептивной поверхности. Деполяризация в рецепторной клетке приводит к возникновению рецепторного потенциала (II) В окончании нейрона возникает генераторный потенциал (III), который при значительной величине запускает потенциалы действия (III, IV).
Электрический сигнал, возникающий на уровне рецепторных структур в «зоне раздела» между внешней средой и мозгом, называется рецепторным потенциалом. Он представляет собой изменение электрического напряжения в рецепторе (рис. 9, II). При достаточной величине изменения этот потенциал вызывает в нервном окончании, контактирующем с рецептором, так называемый генераторный потенциал (рис. 9, III). Последний не распространяется, а удерживается в преобразующем участке нервного окончания. Такой потенциал может быть зарегистрирован как изменение напряжения на небольшом ограниченном участке в районе того места, где происходит процесс преобразования энергии. Если величина генераторного потенциала достигает определенных значений, то в нервном волокне возникает распространяющийся импульс (рис. 9, III, IV). Генераторные потенциалы целиком зависят от действующего стимула, их временные параметры определяются параметрами стимула. Эти потенциалы градуальны (постепенны), проводятся пассивно и затухают по экспоненциальному закону.
Как уже отмечалось, чувствительность органов чувств к специфическому для них виду энергии огромна. Наука о рецепторах пока не может дать исчерпывающего ответа на вопрос о том, что же в сенсорной клетке обусловливает такую исключительную чувствительность. Нет ответа и на вопрос о том, в чем заключаются отличия нервных стволов, проводящих сигналы к мозгу от разных рецепторов. Не определено также, что же исключительно специфического в конечных проекциях рецепторов в высших центрах мозга и что, например, было бы, если зрительный нерв связать с центрами слуха, а слуховой — с центрами зрения. Быть может, можно увидеть звук и услышать свет? Известно ведь, что любой раздражитель достаточной силы, будучи приложен к специфическому рецептору или отходящему от него нервному проводнику, вызывает ощущение той же модальности, как и при действии адекватного раздражителя. Сдавливание, скручивание, растяжение, удар по нерву вызывают обязательный поток импульсов.
Каждый может испытать ощущение света при быстром надавливании на глазное яблоко, а также резкое, неприятное, а иногда и болезненное ощущение при ударе локтя о твердые выступы, когда под ударом оказывается локтевой нерв. Мы знаем также, что подобные ощущения, сохраняя модальность, соответствующую органу чувств, ничего общего не имеют с нормальным ощущением света, кожной боли или прикосновения. Эти наблюдения из повседневной жизни часто приводятся как примеры неспецифических ощущений данной модальности, однако в научной литературе сведения о возможности использования раздражителей, действующие факторы которых резко отличаются от специфических видов энергии, чрезвычайно скудны.
И тем не менее существует предположение о том, что специализация ощущения — это скорее вопрос степени, градации, дифференциации раздражения и места его восприятия мозгом, нежели какого-то специального качества этого раздражения. Как будет описано в соответствующих главах (2 и 3), применение в наших исследованиях фокусированного ультразвука — искусственного раздражителя с физически точно определенными параметрами, количественно дозированного, действующего как на поверхностные, так и на глубокие воспринимающие структуры биологических объектов, дало возможность получить новые существенные факты, расширяющие представления о сенсорной специфичности.
Нейроны и синапсы
Сигнализация, возникающая в «зоне раздела» между организмом и внешней средой и представляющая собой рецепторные и генераторные потенциалы, передается в центральную нервную систему нейронами (нервными клетками). Нейроны состоят из тела клетки, называемого также сомой, дендритов, или ветвей тела клетки, подводящих к нему нервные сигналы, и длинного волокна — аксона, или осевого цилиндра, отводящего сигналы от тела клетки (рис. 10). Когда речь идет о центральной нервной системе, то такое деление отростков клетки на дендриты и аксоны совершенно оправдано, так как они отличаются по форме и функции. Если мы говорим о периферических нервах, в этом случае разница не столь очевидна, ибо периферические нервы содержат нервные волокна, часть из которых проводит сигналы от двигательных ядер центральной нервной системы, а часть — от органов чувств к телам нервных клеток, расположенных в ганглиях, лежащих вблизи головного или спинного мозга. И если первые являются истинными аксонами, то вторые следовало бы рассматривать как дендриты. Однако, поскольку по строению и функции эти волокна не отличимы друг от друга, то независимо от направления проведения в них нервных сигналов они часто называются одними и теми же словами: «аксоны» или «нервные волокна».
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.
Книга посвящена фундаментальным механизмам старения и на их основе поиску путей продления жизни. Изложены современные данные о молекулярных, клеточных, системных механизмах старения. Обсуждается связь между старением и развитием болезней сердечно-сосудистой системы, рака, диабета. Подробно анализируются различные подходы к увеличению продолжительности жизни — ограниченная диета, двигательная активность, изменение температуры тела, физиологически активные вещества, энтеросорбция и др. Приводится комплекс мер по предупреждению преждевременного старения.
В истории развития органического мира Земли было несколько важнейших событий, таких, как возникновение жизни, появление эвкариот, затем многоклеточных организмов. 600 миллионов лет назад многоклеточные животные впервые получают возможность строить скелет, и о тех пор органический мир Земли приобретает все более сходные с современностью черты. Об условиях, в которых произошло это важное событие, и гипотезах о причинах появления скелета у животных идет речь в предлагаемой читателю книге.
Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.