Космос становится больше. Хаббл. Расширение Вселенной - [37]
Британский астроном Фред Хойл.
Виллем де Ситтер, один из самых уважаемых космологов- релятивистов.
Жорж Леметр, которому мы обязаны первой формулировкой теории Большого взрыва.
Альберт Эйнштейн во время посещения Маунт-Вилсона в 1931 году. На фото мы можем увидеть Хаббла (во втором ряду второй слева) и Уолтера Адамса (в центре в шляпе).
Современная космология признает существование темной материи и темной энергии. Сегодняшние представления о составе Вселенной отражены на диаграмме.
Можно посчитать, что эти названия появились недавно, но это не так. Космологическая постоянная, которую ввел Эйнштейн в 1915 году, объясняет возможность существования темной энергии. Темная материя была открыта болгарским астрономом Фрицем Цвикки в 1933 году. Он применил теорему о вириале к скоплению Кома и сделал вывод о том, что в этом скоплении должна присутствовать невидимая материя, потому что в противном случае высокие скорости галактик рассеяли бы это скопление или оно имело бы большие размеры. Представлены три возможных типа распределения темной материи в скоплении галактик: в виде большого гало, при этом в отдельных галактиках темной материи нет (рисунок 1); каждая галактика имеет собственное гало из темной материи (рисунок 2); смешанный вариант — галактика с темным гало внутри большого темного гало скопления (рисунок 3). Третий вариант сегодня считается наиболее вероятным, так что предлагаем новую скороговорку: не галактики с гало и не гало галактик, а галактики с гало внутри гало галактик.
Вселенная де Ситтера, в которой доминировала космологическая постоянная, — это Вселенная будущего, потому что космологическая постоянная предполагает расширение, а расширение влечет уменьшение плотности Вселенной и, соответственно, уменьшение самогравитации. Вселенная де Ситтера — это Вселенная большого разрыва (big rip), в которой расширение со временем все сильнее, — на языке математики это называется экспоненциальным расширением.
Любопытно, что модель Вселенной де Ситтера, хотя и появилась достаточно рано, применима не только к будущему, но и к настоящему, потому что сегодня темная энергия если не определяет структуру Вселенной, то по крайней мере играет в ней важную роль.
В первоначальной Вселенной, вероятно, сложилась похожая ситуация, так как установлен период инфляционного экспоненциального расширения. Но гипотеза инфляционного расширения не была связана с исследованиями Хаббла — ее начал развивать американский физик Алан Гут (1947), и его первая модель была представлена в 1980 году, то есть много лет спустя после смерти героя нашей книги.
Если Вселенная расширяется, нам нужно знать ее величину в каждый момент истории. Но так как мы не отвергаем и возможности того, что Вселенная бесконечна, функция для определения величины должна быть релятивистской. Представим, что галактика сегодня находится от нас на расстоянии 100 Мпк. Через какое-то время из-за расширения Вселенной она может оказаться на расстоянии 200 Мпк. В этом случае мы говорим, что масштабный фактор равен 2. Обозначим эту величину через а. Масштабный фактор — это функция времени, привязанная к функции Хаббла с помощью
1/a(t) da(t)/dt = H(t)
где a(t>0) = 1 является частью определения. Сегодня масштабный фактор при t = t>0 по определению равен единице. Одна из базовых задач космологии — узнать функцию a(t), и это позволит нам увидеть, как менялась a(t) согласно разработанным моделям. Историю космологии как науки можно представить как постепенное выявление функции a(t). Далее мы опишем, как был выяснен масштабный фактор и появились математические графики, описывающие «эволюцию эволюции» Вселенной.
Начнем с трех моделей, которые можно назвать классическими. Они соответствуют Вселенной с доминирующей материей (как сегодня) и без космологической постоянной. Начнем со Вселенной Эйнштейна — де Ситтера. В ней
a(t) α t>⅔
Математическое описание открытой или закрытой Вселенной будет иметь более сложный вид. Но вместо того чтобы писать математическое выражение, представим Вселенную графически на рисунке 1 (следующая страница). На самом деле сейчас а равно 1, поэтому больше подойдет рисунок 2, где t = 0, а время, прошедшее с Большого взрыва, зависит от типа Вселенной. Во Вселенной Эйнштейна — де Ситтера от Большого взрыва до настоящего момента прошло ⅔ времени Хаббла.
Масштабный фактор в случае закрытой Вселенной — это циклоида, то есть кривая, описываемая точкой на окружности, которая, словно колесо, катится без скольжения, как показано на рисунке 3. Как мы можем увидеть, в этой функции ноль соответствует Большому взрыву, затем функция растет до максимального значения, после чего расширение превращается в сжатие и, наконец, в Большое сжатие. Колесо может сделать бесконечное число оборотов, и циклоида будет бесконечной. Но мы не знаем, является ли Вселенная бесконечной последовательностью больших взрывов и больших сжатий. Известно лишь, что во время отскока при Большом сжатии релятивистские формулы не выполняются. Мы никак не можем описать Вселенную подобной плотности и температуры.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.