Космос - [18]

Шрифт
Интервал

Условия в недрах звёзд значительно отличаются от условий в земных лабораториях, но элементарные частицы — электроны, протоны, нейтроны — там такие же, что и на Земле. Звёзды состоят из тех же химических элементов, что и наша планета. Поэтому к ним можно применять знания, полученные по экспериментам в физических лабораториях.

Звезда — раскалённый газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила — сила тяжести вышележащих слоев, пытающаяся сжать звезду.

Однако ни расширения, ни сжатия не происходит, звезда находится в состоянии устойчивого равновесия. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоев увеличивается, то давление, а следовательно, температура и плотность возрастают к центру звезды. Например, плотность вещества в центре Солнца в 100 раз больше плотности воды. Это во много раз превышает плотность любого твёрдого тела на Земле. 

Определение химического состава и физических условий в центральных частях звёзд позволило решить вопрос об источниках звёздной энергии. Оказалось, что для большинства звёзд на долю водорода и гелия приходится не менее 98% массы. При температуре 10–30 млн. градусов и наличии большого числа ядер водорода протекают термоядерные реакции, в результате которых образуются ядра различных химических элементов.

Не все возможные ядерные реакции годятся на роль источников звёздной энергии, а только такие, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды типа Солнца. Примером такой реакции служит протон-протонная ядерная реакция.

В 1905–1907 гг. датский астроном Эйнар Герцшпрунг обнаружил, что голубые звёзды имеют самую высокую яркость, а среди красных звёзд можно выделить слабые и сравнительно яркие, т.е. что цвет и светимость звёзд каким-то образом соотносятся друг с другом. А в 1913 г. американский астроном Генри Рассел сопоставил светимость различных звёзд с их спектральными классами. На диаграмму спектр — светимость, которая теперь называется диаграммой Герцшпрунга — Рассела, он нанёс все звёзды с известными в то время расстояниями (не зная расстояния, невозможно оценить светимость звезды).

>Основные последовательности, образуемые звёздами. Диаграмма Герцшпрунга — Рассела 

На диаграмме Герцшпрунга — Рассела звёзды образуют отдельные группировки, именуемые последовательностями. Самая густонаселённая из них — главная последовательность — включает в себя около 90% всех наблюдаемых звёзд (в том числе и наше Солнце). На главной последовательности любая звезда проводит большую часть своей жизни, пока источником её энергии является реакция превращения водорода в гелий. Именно поэтому на главной последовательности так много звёзд.


Эволюционные превращения звёзд

Жизнь звезды довольно сложна. В течение своей истории она разогревается до очень высоких температур, а старея, остывает до такой степени, что в её атмосфере начинают образовываться пылинки. Одна и та же звезда может раздуться до грандиозных размеров, сравнимых с размерами орбиты Марса, и сжаться до нескольких десятков километров. Светимость её возрастает до миллионов светимостей Солнца и падает почти до нуля.

Картина эволюции звезды усложняется вращением, иногда очень быстрым, на пределе устойчивости (при быстром вращении центробежные силы стремятся разорвать звезду). Некоторые звёзды обладают скоростью вращения на поверхности 500–600 км/с. Для Солнца эта величина составляет около 2 км/с.

Даже такая относительно спокойная звезда, как Солнце, испытывает колебания с различными периодами, на его поверхности происходят вспышки и выбросы вещества. Активность некоторых других звёзд несравнимо выше. На определённых этапах эволюции звезда может стать переменной, начав регулярно менять свой блеск, сжиматься и опять расширяться. А иногда на звёздах происходят сильные взрывы. Когда взрываются самые массивные звёзды, их блеск на короткий срок может превысить блеск всех остальных звёзд галактики вместе взятых.

>На схеме оказано, как из протозвёздного вещества появляется звезда, эволюционирует и может со временем превратиться в белого карлика, нейтронную звезду или в чёрную дыру
>Бриллиантовая звезда VFTS 682 в Большом Магеллановом Облаке 

В начале XX в., в основном благодаря трудам английского астрофизика Артура Эддингтона, окончательно сформировалось представление о звёздах как о раскалённых газовых шарах, заключающих в своих недрах источник энергии — термоядерный реактор, синтезирующий ядра гелия из ядер водорода. Впоследствии выяснилось, что в звёздах рождаются и более тяжёлые химические элементы. Вещество, из которого сделана эта книга, также прошло через «термоядерную топку» и было выброшено в космическое пространство при взрыве породившей его звезды.

По современным представлениям, жизненный путь одиночного светила определяется его начальной массой и химическим составом. Чему равна минимальная возможная масса звезды, с уверенностью мы сказать не можем. Дело в том, что маломассивные звёзды — очень слабые объекты, и наблюдать их довольно трудно. Теория звёздной эволюции утверждает, что в телах массой меньше, чем семь-восемь сотых долей массы Солнца, долговременные термоядерные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звёзд. Их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звёзд не превосходит 2–3 тыс. градусов. Одним из таких тусклых багрово-красных карликов является ближайшая к Солнцу звезда Проксима в созвездии Кентавра.


Рекомендуем почитать
Черное море

В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.


Планета Земля. Познакомьтесь с миром, который мы называем домом

Как выглядела Земля в разные периоды? Можно ли предсказать землетрясения и извержения вулканов? Куда и почему дрейфуют материки? Что нам грозит в будущем? Неужели дожди идут из-за бактерий? На Земле будет новый суперконтинент? Эта книга расскажет о том, как из обломков Большого Взрыва родилась наша Земля и как она эволюционировала, став самым удивительным местом во Вселенной – единственной известной живой планетой. Ведущие ученые и эксперты журнала New Scientist помогут ближе познакомиться с нашими домом, изучить его глубины, сложную атмосферу и потрясающую поверхность.В формате PDF A4 сохранен издательский макет книги.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.