Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - [22]

Шрифт
Интервал

При чём здесь эта детская история? При том, что кварки являются миниатюрными смоляными чучелами для других кварков. Они крепко склеены друг с другом похожим на липкую смолу веществом, состоящим из глюонов. Ответственной за это странное поведение является одна из дополнительных вершин, не имеющая аналогов в КЭД. Любая электрически заряженная частица может испустить фотон. Но фотоны не взаимодействуют друг с другом. Они являются электрически нейтральными и поэтому не излучают другие фотоны. В этом отношении глюоны резко отличаются от фотонов. Законы КХД требуют существования вершин, в которых глюон распадается на два глюона, и каждый из них движется по собственному пути после развилки.

Эти различия между КХД и КЭД делают КХД гораздо более сложной теорией, чем её электрический аналог. Среди прочего это означает, что глюоны могут обмениваться глюонами и связываться в объекты, называемые глюболами, – это частицы, не содержащие кварков и электронов. Более того, глюоны не обязаны собираться исключительно в пары, они могут образовывать длинные цепочки тягучего клея. Ранее я сравнил электроны в атоме с шариками, болтающимися на верёвочках. Верёвочки в моём сравнении были метафорой, но в случае кварков струны, держащие их вместе, вполне реальны. Они представляют собой глюонные струны, натянутые между кварками. В том случае, если кварк под действием внешнего воздействия вылетает из нуклона, за ним тянется длинная глюонная струна, которая в конечном итоге возвращает его обратно.



Слабое взаимодействие

Если вы уже устали от изучения физики элементарных частиц, это нормально. В ней слишком много сложных вещей, которые необходимо запоминать. У нас слишком много частиц, поведение которых требует описания, и нет никаких разумных предположений, откуда они все взялись. Квантовой хромодинамикой и квантовой электродинамикой вряд ли исчерпываются все части, которые составляют Стандартную модель. Всё это очень далеко от элегантной и простой физической теории, которую мы ожидали обнаружить «в основании всего». Физика элементарных частиц оказалась больше похожей на зоологию и ботанику, чем на точную науку. Но это, увы, факт, и мы не можем изменять факты.

Сейчас я расскажу ещё об одной части Стандартной модели. Эта часть известна как слабое взаимодействие. Слабое взаимодействие, подобно электромагнитному и сильному, играет важную роль в объяснении нашего собственного существования, хотя причины, по которым оно так важно, на первый взгляд не очевидны, мы вернёмся к ним в последующих главах.

История слабого взаимодействия снова возвращает нас в конец XIX века, когда французский физик Антуан Анри Беккерель открыл радиоактивность. Открытие Беккереля всего на один год опередило обнаружение электрона Дж. Дж. Томсоном.

Радиоактивность принято делить на три различных типа: альфа, бета и гамма. Они соответствуют трём очень разным явлениям, только одно из которых (бета-распад) связано со слабым взаимодействием. Сегодня мы знаем, что бета-лучи из уранового образца Беккереля были на самом деле электронами, испускаемыми нейтронами ядер урана. После испускания электрона нейтрон немедленно превращается в протон.

Ни в КЭД, ни КХД нет ничего, что могло бы объяснить, как нейтрон может испустить электрон и стать протоном. Самое простое обоснование, которое, возможно, уже пришло вам в голову, – это добавить на диаграмму дополнительные вершины и включить их в наш список основных событий. В вершину будет входить исходный нейтрон, а после развилки – расходиться каждый своей дорогой протон и электрон. Но это неверное описание. Дело в том, что в этот момент на сцене появляется новый персонаж – нейтрино. Беккерель не знал, что при распаде нейтрона помимо электрона и протона появляется ещё одна частица, точнее, античастица – призрачное антинейтрино.

Нейтрино

Нейтрино похоже на электрон, но оно не имеет электрического заряда. Представьте себе, что это электрон, который потерял свои электрические свойства. В некотором смысле отношение между электроном и нейтрино аналогично отношению между протоном и нейтроном.

Что же тогда остаётся в нейтрино от электрона? Нейтрино имеет небольшую массу и… собственно, всё. Оно не излучает фотонов. Оно не испускает глюонов. Это означает, что оно не участвует ни в одном из взаимодействий, в которых участвуют электрически заряженные частицы или кварки. Нейтрино не образует сложных объектов, связываясь с другими нейтрино или частицами. Оно вообще ничего не делает. Фактически нейтрино является одиночкой, оно способно пролететь сквозь свинцовую стену толщиной в несколько световых лет как сквозь пустое пространство. Но нейтрино не полный ноль. Чтобы понять, как нейтрино участвует в нашей пьесе, следует ввести в спектакль ещё одного актёра – W-бозон.

W-бозон

Не беспокойтесь относительно значения слова «бозон». Оно просто обозначает другую частицу, аналогичную по своим свойствам фотону или глюону, но имеющую электрический заряд. W-бозон появляется в двух амплуа: положительно заряженный W-бозон и отрицательно заряженный W-бозон. Как вы догадались, они являются античастицами друг друга.


Еще от автора Леонард Сасскинд
Битва при черной дыре

Что происходит, когда объект падает в черную дыру? Исчезает ли он бесследно?Около тридцати лет назад один из ведущих исследователей феномена черных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу все, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе черных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку.Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.