Космические твердотопливные двигатели - [14]

Шрифт
Интервал

В этой связи интересно сравнить РДТТ с ЖРД. Если для двигательной установки с ЖРД увеличение (сокращение) запаса топлива приводит к соответствующему увеличению (сокращению) продолжительности работы двигателя, а тяга его остается неизменной, то для РДТТ наблюдается противоположный эффект. Таким образом, тягу РДТТ можно менять в значительных пределах путем простого изменения длины. топливного заряда. В этом отношении «гибкими» являются секционные РДТТ (подобные рассмотренным ранее SRM и UA-1205): варьируя число секций, можно легко получать двигатели разной тяги.

Завершая обсуждение вопросов, связанных с двигателями РН «Дельта», отметим, что в 1977–1978 гг. были созданы новые варианты РДТТ серии «Стар-37», в которых реализованы многие из последних достижений в области твердотопливных двигателей. Теперь же мы переходим к рассмотрению космических РДТТ, созданных во Франции.

РДТТ ракеты-носителя «Диамант». Твердотопливные двигатели устанавливались на второй и третьей ступенях этой РН, при помощи которой было запущено Несколько французских ИСЗ в 1965–1975 гг. (на первой ступени ракеты использовался ЖРД). «Диамант» является единственной РН, созданной во Франции. Подобно американским, эта РН подверглась ряду усовершенствований, направленных на повышение мощности.

В последнем варианте «Диамант» применялись односопловые РДТТ с короткими стеклопластиковыми корпусами диаметром 1,5 (вторая ступень) и 0,8 м (третья ступень), в которых содержалось соответственно 4 и 0,685 т смесевого топлива. В первом из этих РДТТ предусмотрено управление вектором тяги за счет впрыска в сопло фреона, что позволяет контролировать полет ракеты в плоскостях тангажа и курса. Этот двигатель работает 62 с на постоянном уровне тяги 180 кН. Соответствующие параметры для РДТТ третьей ступени «Диамант» составляют 46 с и ~ 30 кН (усредненная величина). Подобно РДТТ второй ступени, этот двигатель содержит неподвижное сопло с графитовой горловиной, однако в нем нет устройств для управления вектором тяги.

Из рис. 1, на котором был представлен данный РДТТ, видно, что в его топливном заряде имеется центральный круглый канал с поперечными щелями. Такая конфигурация заряда обеспечивает неизменную поверхность горения и соответственно постоянную тягу двигателя в процессе работы. Точные размеры внутренней полости заряда обеспечиваются механической обработкой.

На топливо приходится 91 % от полной массы двигателя, и оно имеет следующий состав: 60 % перхлората калия, 21 % полиуретана, 19 % алюминия (приведены скругленные значения). Применение этого сравнительно малоэффективного топлива позволило получить удельный импульс РДТТ лишь около 2730 м/с. Для РДТТ второй ступени РН «Диамант» (где также использовалось полиуретановое топливо) этот параметр еще меньше — примерно 2680 м/с.

Следует отметить, что двигатели ракеты «Диамант» не отражают в полной мере успехи Франции в области РДТТ. Так, например, в баллистических ракетах дальнего действия, созданных в этой стране, используются РДТТ с топливными зарядами, масса которых достигает 16 т и время горения 76 с. В 1969 г. одна французская фирма демонстрировала на выставке экспериментальный заряд диаметром 3 м.

Многие современные достижения в области РДТТ реализованы да твердотопливном двигателе, совместно созданном недавно специалистами Франции, Италии и ФРГ для использования в космических аппаратах, начиная с 1980 г. Этот РДТТ с суммарной массой 692 кг развивает полный импульс тяги 1900 кН с и удельный импульс свыше 2890 м/с. Однако прежде чем перейти к двигателям КА, рассмотрим двигатели еще нескольких РН.

РДТТ «Вэксуинг». Этот двигатель, представленный на рис. 11, использовался на третьей ступени английской РН «Блэк Эрроу», при помощи которой в 1971 г. был запущен первый английский ИСЗ «Просперо». Хотя «Вэксуинг» и подобные ему двигатели и не имеют широкого применения, рассмотрение этого РДТТ позволит получить более полное представление о возможных конструкциях космических РДТТ, их особенностях и проблемах, решаемых при их создании.

В РДТТ «Вэксуинг» применяется корпус в виде тонкостенного (0,6–0,8 мм) стального сосуда диаметром 712 мм. В двигателе содержится 312 кг не совсем обычного смесевого топлива. Оно состоит из перхлората аммония (63 %), пикрата аммония (14 %), алюминия (12 %) и горючего-связки на основе пластифицированного полиизобутилена (11 %). Это топливо необычно в том отношении, что изготовление заряда из него сводится к смешиванию указанных компонентов до состояния густой пасты (с плотностью 1,77 г/см>3), последующее отверждение которой не производится. При температуре 60 °C топливная масса становится настолько пластичной, что ею можно заполнять под вакуумом корпус РДТТ.

После загрузки в топливо вводится профилированная игла для образования внутреннего канала горения. Созданием соответствующего гидростатического давления обеспечивается плотное прижатие заряда к корпусу, который предварительно покрывается теплоизоляционным слоем (наполненный хлорсульфоновый полиэтилен) и адгезионным составом (нитрильный каучук).

Двигательная установка с РДТТ «Вэксуинг» имеет массу 352 кг (на долю топлива приходится 89 % от этой величины) и работает 37 с, развивая удельный импульс около 2710 м/с. В течение первых 15 с тяга РДТТ постепенно возрастает, достигая ~ 29 кН (при этом давление в камере увеличивается до ~ 2,8 МПа), после чего плавно снижается. Создатели «Вэксуинга» опасались, что пастообразный топливный заряд, достаточно упругий при небольшой нагрузке, «потечет» под воздействием ускорений в процессе работы двигателей первой и второй ступеней РН. Соответствующие эксперименты показали, однако, что опасный уровень перегрузок существенно превышает действительный.


Еще от автора Герман Алексеевич Назаров
Мифы советской эпохи

Герман Назаров — инженер-ракетчик, журналист, исследователь российской истории XX века. На основании архивных документов разоблачает исторические мифы, восстанавливает "белые пятна", образовавшиеся в результате партийной цензуры, причем не только коммунистической, но и постсоветского периода: от восстания на броненосце "Потемкин" до трагедии на атомном ракетоносце «Курск».


Да были же, были американцы на Луне!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Какое-то безумие тлело в нём…

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Галактики. Большой путеводитель по Вселенной

Галактики – это своеобразные «кирпичики» в бескрайнем «здании» Вселенной. Возникшие из пыли Большого Взрыва, эти «кирпичики» не находятся в состоянии покоя вот уже 13 миллиардов лет – они продолжают изменяться. Джеймс Гич рассказывает увлекательную историю эволюции самых красочных элементов космоса: как возникли галактики; почему их так много, они отличаются размерами, яркостью и формой; и как им удалось вырастить в своих недрах черные дыры. Как практикующий исследователь Гич приподнимает завесу тайны над работой астрофизика: они борются за финансирование, пишут заявки на доступ к телескопам в последний момент перед дедлайном ради азарта увидеть то, что еще не было доступно глазу человека.


Искусственный спутник земли

В книге, написанной на основе отечественных и иностранных источников, рассказывается о создании и запуске в СССР первых в мире искусственных спутников Земли (ИСЗ), о теоретических вопросах, которые необходимо было разрешить при этом. В ней последовательно излагаются этапы освоения космоса, начиная с осуществления необитаемого и неавтоматизированного искусственного спутника Земли и кончая изложением вопросов создания межпланетных станций и космических кораблей. Книга рассчитана на воинов Советской Армии, Авиации и Флота, поэтому в ней уделено внимание описанию военного значения ИСЗ и межпланетных станций. В целом автор стремился не перегружать книгу техническими подробностями и излагал материал в возможно более популярной и доступной для широкого читателя форме.


Мир астрономии

О рождении Вселенной, ее истории, происхождении, образовании и эволюции звезд и галактик, изучении Вселенной, новых открытиях астрономов рассказывает эта книга.


Пилотируемые космические полеты

Краткая история развития космонавтики в СССР, США и Китае, интересные факты, перечень целей, размышления о будущем.


Империя Сергея Королёва

Сергей Павлович Королёв – это человек, непосредственно формировавший облик будущего. Благодаря ему космонавтика стала модным трендом, подкреплявшим советскую пропаганду. В этой книге известного исследователя А. И. Первушина подробно описывается, как С. П. Королёв создал маленькую «империю», преобразившую многие уголки страны.


За пределами Земли: В поисках нового дома в Солнечной системе

«Однажды люди научатся жить на Титане, самом крупном спутнике Сатурна» – этими словами начинается книга «За пределами Земли», написанная планетологом Амандой Хендрикс и научным журналистом Чарльзом Уолфортом. Не на Марсе, как считалось долгие годы, а именно на Титане, с его плотной атмосферой, щадящим климатом и неисчерпаемыми запасами топлива и воды, возможно создание автономной колонии. Аргументируя свою точку зрения, ученый и журналист показывают не только неизбежность и заманчивые перспективы освоения планет и спутников Солнечной системы, но и болевые точки государственного и коммерческого освоения космоса, политические, бюрократические и научные проблемы, которые препятствуют покорению иных миров.


Сергей Павлович Королев

В статьях, помещенных в этом сборнике, рассказывается о жизни и деятельности проелавленного конструктора, об истории создания первых искусственных спутников Земли и космических кораблей.Брошюра рассчитаны на широкий круг читателей.


Космические аппараты исследуют Луну

Брошюра посвящена 20-летию выдающегося события в истории человечества — запуску в январе 1959 г. в СССР автоматической станции «Луна-1», которая впервые в мире достигла окрестностей другого небесного тела. Приводится описание первых «разведчиков космоса» — советских автоматических станций «Луна», показано, какую эволюцию претерпела сейчас советская «лунная» космическая техника, даны краткие научные итоги космических исследований Луны.Брошюра рассчитана на инженеров, преподавателей и студентов вузов, учащихся старших классов, а также на более широкий круг читателей, интересующихся вопросами космонавтики.


С. П. Королев (к 70-летию со дня рождения)

12 января 1977 г. исполняется 70 лет со дня рождения выдающегося ученого нашей страны, основоположника практической космонавтики, академика Сергея Павловича Королева. В статьях, помещенных в этом сборнике, рассказывается о жизни и деятельности прославленного конструктора, об истории создания первых искусственных спутников Земли и космических кораблей.Брошюра рассчитана на широкий круг читателей.


Космическая технология и производство

В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.Брошюра рассчитана на широкий круг читателей.