Космические двигатели будущего - [7]
Теоретически температура теплосброса, оптимальная с точки зрения размеров холодильника, должна составлять 75 % от температуры источника тепла. При температурных ограничениях, накладываемых твердотельным реактором, холодильник-излучатель всегда будет если не самой тяжелой, то самой громоздкой частью космической энергоустановки. Для эффективной работы холодильника его поверхность должна иметь температуру, близкую к нижней температуре теплового цикла.
Добиться этого за счет естественной теплопроводности материалов нельзя, необходим принудительный перенос тепла путем циркуляции жидкого или газообразного теплоносителя. При этом появляются дополнительные потери энергии на прокачку теплоносителя, и установка оказывается весьма уязвимой к метеоритному пробою. При больших поверхностях холодильника резко возрастает вероятность попадания метеорита размером, достаточным для разрушения стенки канала с теплоносителем, что приведет к разгерметизации и выходу установки из строя.
Наиболее удачным конструктивным решением, позволяющим обойти эти проблемы (потеря мощности и метеоритный пробой), является использование тепловых труб. Тепловая труба представляет собой канал с циркулирующим теплоносителем, на внутренних стенках которого с зазором располагается так называемый фитиль (в простейшем случае это мелкоячеистая сетка). Предварительно откачанная труба заполняется жидкостью в количестве, достаточном для заполнения зазора между фитилем и стенкой трубы, где она удерживается затем капиллярными силами.
В тепловой трубе различают зоны нагрева, переноса тепла и охлаждения. В холодильнике-излучателе две последние зоны, как правило, совмещены. Тепло, подводимое к зоне нагрева, испаряет жидкость, пары которой проходят через отверстия фитиля во внутреннее пространство трубы и устремляются к зоне охлаждения. Там происходит конденсация жидкости с передачей тепла конденсации стенкам трубы, от которых оно отводится излучением. Жидкость, образовавшаяся в результате конденсации, возвращается капиллярными силами, создающимися в фитиле и в зазоре между фитилем и стенкой трубы, назад в зону нагрева.
Такой процесс теплопередачи настолько эффективен, что, например, сейчас испытаны трубы, передающие тепловой поток 10 кВт на каждый 1 см>2 поперечного сечения трубы на расстояние в несколько метров при перепаде температур между концами трубы менее 0,01 К. Это эквивалентно теплопередаче сплошного стержня с коэффициентом теплопроводности, в несколько тысяч раз превышающим соответствующее значение для меди. С тепловыми трубами по возможностям транспортировки тепла могут конкурировать лишь системы с жидкометаллическим теплоносителем, но в них требуются затраты работы на прокачку.
Рис. 6. Схема пылевого холодильника-излучателя: 1 — насос, 2 — теплообменник, 3 — ферромагнитная пыль, 4 — обмотка соленоида, 5 — силовые линии магнитного поля
Из тепловых труб собирается поверхность холодильника-излучателя. Зона подвода тепла может либо непосредственно контактировать с охлаждаемым узлом, либо омываться промежуточным теплоносителем. Поскольку для создания излучающей поверхности нужно использовать много тепловых труб, а их каналы могут быть между собой несвязанными, то повреждение одной или нескольких труб метеоритом лишь несущественно скажется на работе всей установки.
Возможны схемы теплосброса, когда теплоносителем является ферромагнитная пыль (рис. 6), которая прокачивается насосом через теплообменник, снимая отработанное тепло энергоустановки, и выбрасывается во внешнее пространство. Там они захватываются и возвращаются снова на вход насоса. В магнитном поле ферромагнитные частицы, сцепляясь друг с другом, выстраиваются вдоль силовых линий, создавая излучающую оболочку. При достаточной магнитной проницаемости вещества пыли все внешнее магнитное поле оказывается сосредоточенным в этой оболочке и не происходит его бесполезного рассеяния.
Преимуществом такого типа холодильника-излучателя является его полная неуязвимость к поражению метеоритами, а также малые размеры при транспортировке энергоустановки с поверхности Земли на орбиту спутника, так как при этом пыль может находиться в малогабаритном контейнере. В настоящее время эта схема находится еще в стадии теоретических проработок. Ее реализация сдерживается отсутствием легких и экономичных источников магнитного поля.
Импульсные двигатели на микровзрывах и фотонный двигатель. Принцип действия импульсных ядерных ракетных двигателей (ИЯРД), схемы которых приведены на рис. 7, а и б, заключаются в том, что над поверхностью массивного отражателя производятся периодические ядерные или термоядерные взрывы. Существенными элементами ИЯРД являются источник магнитного поля, которое препятствует попаданию заряженных продуктов реакции на поверхность отражателя, и демпфер, служащий для сглаживания импульсной нагрузки, передаваемой ракете.
Обычно в таких двигателях в результате воздействия взрыва испаряется либо материал отражателя, либо рабочее тело, подаваемое на поверхность отражателя. Кроме того, для улучшения условий протекания ядерной реакции, увеличения доли прореагировавших атомов и уменьшения температуры взрыва ядерный заряд заключают в достаточно толстую оболочку пассивного вещества. В результате отбрасываемая масса будет состоять в основном из веществ, не принимающих участие в реакции (водород, литий и др.), и скорость истечения в таких двигателях ограничена 100 км/с.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В этой книге речь идет об удивительных небесных телах – экзопланетах. Эти планеты вращаются не вокруг нашего Солнца, а вокруг других звезд. Разнообразие видов экзопланет поражает воображение: горячие газовые гиганты и холодные мини-копии Нептуна, миры-океаны и суперземли, обращающиеся вокруг своих звезд или свободно плывущие в космическом пространстве. Что собой представляют эти миры? Как ученым удалось их обнаружить? И, конечно, есть ли там жизнь? Добро пожаловать в захватывающее путешествие! Для широкого круга читателей.
14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.
Инсайдерская история о том, как ученые пытались открыть одну из главных тайн космологии и сбились с пути, обольщенные блеском Нобелевского золота. Каково это — быть очевидцем Большого взрыва? В 2014 году астрономы, вооруженные самым мощным в истории наземным радиотелескопом BICEP2, сочли, что увидели искру, воспламенившую Большой взрыв. Миллионы человек по всему миру смотрели прямую трансляцию пресс-конференции из Гарвардского университета, на которой было объявлено об этом эпохальном открытии.
В книге всемирно известного астрофизика, члена Королевского астрономического общества сэра Мартина Риса описываются фундаментальные силы, управляющие нашей Вселенной. Автор утверждает, что расширяющаяся Вселенная может быть определена всего шестью числами: N, e, Ω, l, Q, D, каждое из которых играет особую и решающую роль в ее эволюции, а вместе они определяют ее развитие и потенциал возможностей. Два из них связаны с основными силами; другие два определяют размер и общую структуру Вселенной и показывают, будет ли она существовать вечно; еще два говорят о свойствах самой Вселенной.
Последние несколько лет стали эпохой триумфа теории космологической инфляции, объясняющей происхождение Вселенной. Эта теория зародилась в начале 1980-х годов на уровне идей, моделей и сценариев, давших ряд четких проверяемых предсказаний. Сейчас благодаря прецизионным измерениям реликтового излучения, цифровым обзорам неба и другим наблюдениям эти предсказания подтверждаются одно за другим. В книге отражено развитие главных идей космологии на протяжении последних ста лет, при этом главное внимание уделено теории космологической инфляции.
«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».