Космические двигатели будущего - [15]

Шрифт
Интервал

Лазерный МГД-двигатель. В рамках работ по анализу перспективных двигателей для одноступенчатого транспортного корабля в США проведены исследования по созданию МГД-двигателя с использованием лазера. Основное преимущество такого двигателя, по сравнению с лазерным воздушно-реактивным двигателем, заключается в том, что за счет ускорения рабочего тела с помощью электродинамических сил предоставляется возможность получения высоких скоростей истечения реактивной струи. В качестве рабочего тела используется плазма, получаемая из атмосферного воздуха; источник энергии — лазерные генераторы орбитальных или наземных станций, вдоль которых движется транспортный-космический корабль.

МГД-двигатель транспортного космического корабля с площадью поперечного сечения, равного площади поперечного сечения ракеты-носителя «Сатурн-5», имеет впереди приемник лазерного излучения, за ним кольцевой воздухозаборник. Из воздухозаборника воздух попадает в ионизационную камеру, где под воздействием лазерного излучения ионизуется и превращается в плотную плазму. Основная часть лазерного излучения не поглощается в образовавшейся плазме, а отражается на стенки, вдоль которых размещены преобразователи лазерного излучения в электрический ток. Вырабатываемая электроэнергия используется для создания тяги, подобно тому, как это делается в торцевых плазменных двигателях: плазма ускоряется силой, возникающей в результате взаимодействия электрического тока с собственным магнитным полем. Струя плазмы, вылетающая из двигателя, создает реактивную тягу.

Анализ рабочих параметров проводился применительно к величине орбитальной массы транспортного космического корабля 22 т: ток 360 кА — на уровне Земли, 600 кА (максимум) — при максимальной тяге для скорости полета 500 м/с и при орбитальной скорости 280 м/с, скорость истечения реактивной струи заряженных частиц несколько сотен метров в секунду у Земли и 460 км/с на орбите. Мощность лазерного излучения быстро возрастает до 1,35 ГВт при разгоне космического корабля до достижения скорости полета 750 м/с, а со скорости полета порядка 1,5 км/с линейно растет до 3,75 ГВт на скорости орбитального полета.

Электромагнитный резонаторный двигатель. В отличие от ранее рассмотренных схем двигателей, в этом двигателе отсутствует рабочее тело, вернее, в его роли выступает электромагнитное излучение. Мы рассматривали уже возможность использования давления электромагнитного излучения для создания тяги в системах типа солнечный парус и выяснили, что при использовании даже такого практически неограниченного источника электромагнитной энергии, каким является Солнце, возможное значение тяги составляет несколько килограммсил.

Можно ли рассчитывать на получение заметной тяги за счет давления электромагнитного излучения при использовании искусственного источника излучения (например, лазера или мощного генератора электромагнитных волн СВЧ-диапазона)?

Рассмотрим подробнее процесс создания тяги за счет давления электромагнитного излучения. Пусть на поверхность падает поток электромагнитного излучения с достаточно большой плотностью на единицу площади. Если бы вся эта мощность могла бы быть преобразована в тягу, величина последней при достаточно развитой поверхности приема излучения могла быть значительной. Однако процесс преобразования энергии электромагнитного излучения в кинетическую энергию космического аппарата обладает той особенностью, что только крайне незначительная часть падающей энергии (а именно W/c, где W — поток энергии; с — скорость света) преобразуется в кинетическую энергию космического аппарата.

Остальная часть энергии снова безвозвратно уходит в космическое пространство. Если бы эту энергию удалось заставить многократно падать на одну и ту же поверхность, существенно можно было бы повысить эффективность преобразования энергии электромагнитного излучения в кинетическую энергию движения космического аппарата. Эта идея реализуется в электромагнитном резонаторном двигателе.

Принципиальная схема электромагнитного резонаторного двигателя (ЭМРД) показана на рис. 12. Разгон космического аппарата осуществляется за счет давления электромагнитного излучения в открытом резонаторе, образуемом зеркалами 2, 3, на зеркало космического аппарата.

Накачка электромагнитного излучения источником 1 в резонатор осуществляется через вентиль 4. Давление электромагнитного излучения в резонаторе во много раз превосходит давление излучения источника (за счет накопления электромагнитного излучения в резонаторе). Разгон аппарата продолжается до полного затухания электромагнитных колебаний в резонаторе после выключения источника 1. При отсутствии бокового рассеяния и потерь в зеркалах и среде энергия электромагнитных колебаний должна полностью переходить в кинетическую энергию космического аппарата.

Двигательная система предполагает наличие у неподвижного источника и космического аппарата строго-ориентированных относительно друг друга зеркал. Это позволяет многократно использовать импульс волн, отражающихся попеременно от каждого зеркала, для увеличения импульса космического аппарата. Именно за счет многократного использования импульса фотонов, передающих малую долю всей энергии космическому аппарату при каждом отражении от его движущегося зеркала, достигается высокий коэффициент преобразования энергии электромагнитных колебаний в кинетическую энергию аппарата, что является серьезным преимуществом ЭМРД перед другими типами двигателей, использующих для создания тяги давление электромагнитного излучения. Вместе с тем следует отметить огромные технологические трудности, которые предстоит преодолеть в случае реализации этой схемы.


Еще от автора Александр Сергеевич Дмитриев
Основные вехи творческого пути Генриха Манна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
186 суток на орбите (спросите у космонавта)

Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


100 миллиардов солнц: Рождение, жизнь и смерть звезд

Книга астронома из ФРГ посвящена изложению современных взглядов на свойства, строение, происхождение и эволюцию звезд. Не применяя математики и сложной терминологии, автор просто и наглядно объясняет все основные результаты теории звезд, начиная с ее классических разделов и кончая самыми современными данными о пульсарах, рентгеновских звездах и черных дырах.


Пилотируемые полеты на Луну

Выпуск Итоги науки и техники из серии Ракетостроение, том 3, «Пилотируемые полеты на Луну, конструкция и характеристики Saturn V Apollo» является обзором и систематизацией работ, информация о которых опубликована в изданиях ВИНИТИ АН СССР в 1969—1972 гг. В томе 3 описываются конструкция, весовые, летные характеристики и космические летные испытания ракеты-носителя Saturn V и корабля Apollo. Рассматриваются системы управления корабля Apollo, принципы прицеливания траектории полета Земля-Луна-Земля, навигация, коррекция траектории полета, методы аварийного возвращения.