Конструкции, или Почему не ломаются вещи - [12]
Коши осознал, что такое представление о напряжении можно использовать не только для того, чтобы предсказать разрушение материала, но и для более общего описания состояния тела в любой его точке. Другими словами, напряжение в твердом теле напоминает давление в жидкости или газе. Оно является мерой воздействия внешних сил на атомы и молекулы, из которых состоит материал и которые вынуждены под действием этих сил сближаться или удаляться друг от друга.
Таким образом, сказать, что напряжение в данной точке какого-то куска стали составляет 500 кгс/см>2, ничуть не более вразумительно и не менее таинственно, чем сказать, что давление в шинах моего автомобиля 2 кгс/см>2. Однако, хотя понятия о давлении и напряжении вполне сопоставимы, нужно иметь в виду, что давление действует в любом направлении внутри жидкости, тогда как напряжение является величиной, характеризующейся определенными направлениями действия. Напряжение может, в частности, действовать в одном-единственном направлении; во всяком случае, пока мы будем считать, что это именно так.
В количественном выражении напряжение в заданной точке определяется отношением силы, или нагрузки, приходящейся на небольшую площадку в окрестности этой точки, к величине этой площадки[5].
Если напряжение в некоторой точке мы обозначим буквой s, то напряжение = s = (нагрузка/площадь) = (Р/А), где Р - нагрузка, а А - площадь, на которую, как можно считать, эта нагрузка действует (рис. 6).
Рис. 6. Напряжение, возникающее в бруске при растяжении. (Ситуация при сжатии выглядит аналогичным образом.)
Вернемся теперь к нашему кирпичу, который в предыдущей главе мы оставили висящим на веревке. Если кирпич весит 5 кг, а веревка имеет сечение 2 мм>2, то кирпич натягивает веревку с силой 5 кгс, а напряжение в веревке s = (нагрузка/площадь) = (Р/A) = 5 кгс/2 мм>2 = 2,5 кгс/мм>2, или, если угодно, 250 кгс/см>2.
Единицы напряжения
В связи со сказанным возникает порой вызывающий досаду вопрос о единицах напряжения. Напряжение можно выразить, и часто его именно так и выражают, в различных величинах, соответствующих какой-либо единице силы, деленной на какую-либо единицу площади. Чтобы не было путаницы, в этой книге мы ограничимся использованием следующих единиц.
Меганьютон на квадратный метр - МН/м>2. Это единица СИ - Международной системы единиц, которая в качестве единицы силы использует Ньютон - Н.
1Н = 0,102 кгс (приблизительно весу одного яблока).
1 МН (меганьютон)=1 млн. Н, что составляет почти 100 т.
Килограмм силы на квадратный сантиметр - кгс/см>2
Перевод одних единиц в другие:
1 MH/м>2= 10,2 кгс/см>2, 1 кгс/см>2=0,098 МН/м>2.
Таким образом, полученное в нашей веревке напряжение составляет 250 кгс/см>2 или 24,5 МН/м>2. Обычно для приближенного вычисления напряжений нет необходимости и в абсолютно точных коэффициентах перевода одних единиц в другие.
Стоит повторить: важно осознать, что напряжение в материале, подобно давлению в жидкости, есть величина, привязанная к некоторой точке; оно не относится к какой-либо определенной площади поперечного сечения, такой, как квадратный сантиметр или квадратный метр.
Деформация
В то время как напряжение говорит нам о том, сколь интенсивно принуждаются к расхождению в данной точке твердого тела атомы, деформация говорит о том, сколь далеко этот процесс растяжения зашел, то есть каково относительное растяжение межатомных связей,
Так, если стержень, имевший первоначально длину L, под действием силы удлинился на величину l, то деформация, или относительное изменение длины стержня, которую обозначим буквой е, будет e = l/L(рис. 7)
Рис. 7. Деформация, возникающая в бруске при растяжении. (Деформация при сжатии выглядит аналогичным образом.)
Возвращаясь к нашей веревке, можно сказать, что если ее первоначальная длина была, допустим, 2 м (200 см), а под действием веса кирпича она удлинилась на 1 см, то деформация веревки е = l/L= 0,005, или 0,5%.
Деформации, возникающие в инженерной практике, обычно весьма малы, поэтому инженеры, как правило, выражают их в процентах, что уменьшает вероятность ошибки, если оперировать десятичными дробями с множеством нулей.
Подобно напряжению, деформация не связана с какой-либо опеределенной длиной, сечением или формой материала. Она также характеризует состояние материала в точке. Поскольку для определения деформации мы делим удлинение на первоначальную длину, она выражается безразмерной величиной - числом, не требующим какой-либо единицы измерения. В равной мере все сказанное относится не только к растяжению, но и к сжатию.
Модуль Юнга, или какова жесткость данного материала?
Как уже говорилось, в своей первоначальной форме закон Гука хотя и заслуживал внимания, но свалил в одну кучу свойства материала и поведение конструкций. Произошло это в основном из-за отсутствия понятий "напряжение" и "деформация", не последнюю роль сыграли здесь существовавшие в прошлом трудности, связанные с испытанием материалов.
В настоящее время для испытания материала как чего-то отличного от конструкции из него изготовляют так называемый образец. Форма образца может быть самой разной, но, как правило, это стержень с участком постоянного сечения, на котором и производятся измерения, и утолщенными концами для закрепления в испытательной машине. Обычная форма металлических образцов показана на рис. 8.
Еще в первые десятилетия нашего века ответ на вопросы о свойствах материалов искали в эксперименте. И лишь последние 40 лет ученые, специалисты в области материаловедения, стали серьезно изучать строение материалов, убедившись, что их свойства зависят от совершенства в расположении атомов. Обо всем этом живо и с юмором рассказывает автор книги профессор университета в Рединге (Великобритания) Джеймс Эдвард Гордон. Книга рассчитана не только на школьников и студентов, но и на тех, кого по роду работы интересует поведение современных материалов и прочность конструкций.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.