Коллайдер - [43]
В том же году, когда Алфер и Гамов опубликовали свою «алфавитную» статью, Джулиан Швингер и Ричард Фейнман из Соединенных Штатов и Синъитиро Томонага из Японии независимо друг от друга выпустили цикл статей, в которых была изложена квантовая теория электромагнитного поля. (Томонага пришел к своим идеям, когда шла Вторая мировая война, поэтому у него не было возможности оповестить о них научную общественность.) В работах принстонского ученого Фримана Дайсона новая теория, названная квантовой электродинамикой (КЭД), приобрела законченный вид. Она в итоге стала образцом того, как должно выглядеть описание природных сил.
Из всех работавших над КЭД именно Фейнману принадлежит самая наглядная интерпретация ее математических формул. Он придумал очень удобную систему графических обозначений, отражающих процесс взаимодействия частиц друг с другом: электроны и остальные заряженные частицы изображаются стрелками, а фотоны - волнистыми линиями. Например, обмен фотоном между двумя электронами будет выглядеть так: две стрелки с течением времени сходятся, между их концами пробегает волнистая линия, и затем они расходятся. Приписав каждой подобной картинке определенное значение и установив правила, по которым они складываются, Фейнман дал рецепт вычисления вероятности любого события с участием электромагнитного взаимодействия. Эта система обозначений, известная как диаграммы Фейнмана, получила широкое распространение.
Квантовая электродинамика излечила некоторые математические недуги, ставшие настоящей напастью для квантовых теорий электронов и других заряженных частиц. До этого теоретики, пытаясь применить квантовую концепцию к электронам, то и дело наталкивались в вычислениях на не имеющие смысла «бесконечности». Фейнман показал, что если применить особую процедуру (провести так называемую перенормировку), вклады от части диаграмм взаимно уничтожаются, и получается конечный ответ.
Вдохновленные успехом КЭД, в 50-х гг. многие теоретики решили применить аналогичные методы к слабому, сильному и гравитационному взаимодействиям. Но это теоретическое троеборье оказалось не таким легким, как виделось на первый взгляд. Каждый этап эстафеты таил в себе свои препятствия.
На тот момент в теорию бета-распада Ферми, которая в новой версии стала называться универсальным взаимодействием Ферми, были включены мюоны. Одно из главных предсказаний этой теории получило свое подтверждение в середине десятилетия. Фредерик Рейнс и Клайд Коуэн из Лос-Аламосской национальной лаборатории поместили возле атомного реактора огромный контейнер с жидкостью и впервые впрямую зарегистрировали нейтрино. Эксперимент был нацелен на то, чтобы поймать редкие случаи взаимодействия реакторных нейтрино с протонами жидкости. Последние при этом превращаются в нейтроны и позитроны (антиэлектроны) - происходит так называемый обратный бета-распад. Когда частица встречает свою античастицу, они аннигилируют (исчезают), излучая свою энергию в фотонах. К испусканию фотонов приводит и поглощение жидкостью нейтронов. Поэтому Рейнс и Коуэн догадались, что по паре одновременных вспышек (во второй, светочувствительной жидкости), вызываемых этими двумя потоками фотонов, можно судить о присутствии нейтрино. Как ни редки такие события, экспериментаторы их засекли. Последующие эксперименты с гораздо большими объемами жидкости, проведенные Рейнсом и Коуэном, а также другими группами, подтвердили этот революционный результат.
Когда последний ингредиент теории Ферми - предшественницы теории слабого взаимодействия - получил свое экспериментальное подтверждение, физики уже начали осознавать ее очевидную неполноту. Особенно явно она выступала при сравнении с потрясающими результатами КЭД. В КЭД в изобилии присутствуют всевозможные естественные симметрии. На диаграммах Фейнмана, где представлены электродинамические процессы, одна из них просто бросается в глаза. Поменяем направление временной оси, заставив течь время в противоположном направлении, - рисунок от этого не изменится. Следовательно, процессы, идущие вперед и назад по времени, не отличаются. Эта симметрия называется инвариантностью относительно обращения времени.
Вторая симметрия сравнивает между собой процесс и его зеркальное изображение. Если процесс в зеркале идет так же, как и без него (эта ситуация имеет место в КЭД), говорят о сохранении четности. Скажем, буква «Ш», совпадающая со своим зеркальным изображением, четность сохраняет, а вот букве «Щ» ее хвостик мешает это сделать.
В КЭД, кроме того, идеально сохраняется масса, давая повод ввести еще одну симметрию. Когда электроны (или другие заряженные частицы) перекидываются между собой фотонами, последним, что бы ни случилось, запрещается носить с собой массу. Электроны в электромагнитных процессах остаются электронами и никогда не меняют свой облик. Не надо быть гением, чтобы заметить разницу с бета-распадом, где электроны жертвуют своим зарядом и массой и примеряют на себя образ нейтрино.
Вопрос о симметриях слабого взаимодействия в 1956 г. выступил на передний план, когда американские физики китайского происхождения Цзун Дао Ли и Чэнь Нин (Фрэнк) Янг предложили изящное решение загадки с распадом мезона. Примечательно, что у положительных каонов есть два канала распада: они распадаются на два или три мезона. Причем четности конечных состояний не совпадают. Поэтому напрашивалось объяснение, что и рождающие их частицы относятся к разным классам. Но Ли и Янг показали: если допустить, что в слабых процессах четность не сохраняется, и те и другие продукты могут происходить от одной-единственной частицы. Так что иногда распады с участием слабых сил в зеркале меняют свою внешность. Нарушение четности на первый взгляд противоречит здравому смыслу, но оно, как оказалось, дает ключ к пониманию деталей слабого взаимодействия.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.