Когда прямые искривляются. Неевклидовы геометрии - [23]
Перпендикуляры к экватору — меридианы — можно наглядно представить. Достаточно рассмотреть очищенный мандарин. Линии, разделяющие дольки, будут пересекаться на полюсах.
Обратите внимание, что два больших круга делят поверхность шара на четыре части.
Три больших круга, которые не пересекаются в одной точке, делят поверхность сферы на восемь областей, называемых сферическими треугольниками.
Сферический треугольник также может быть определен как часть поверхности сферы, получаемая в результате пересечения трехгранника и сферы. Дуги на сфере между вершинами А, В и С называются сторонами треугольника.
* * *
ТРЕУГОЛЬНИКИ И ТРЕХГРАННИКИ
Сферический треугольник определяется как часть поверхности сферы, ограниченная тремя большими кругами. Если вершинами такого треугольника являются точки А, В и С, то фигура, определенная точками А, В, С и центром сферы 0, называется трехгранником.
* * *
Внешняя поверхность долек мандарина образована двумя меридианами.
Таким образом, на следующем рисунке мы можем ввести такие обозначения: сторону ВС назовем буквой а, сторону АС — Ь, а сторону АВ — с. Буквы А, В и С также часто используются для обозначения внутренних углов сферического треугольника.
Выполним некоторые вычисления, используя нашу Землю в качестве модели. Для сферы существует несколько полезных формул. Пусть R обозначает радиус Земли, тогда объем (V) и площадь (S) Земли вычисляются следующим образом:
Если радиус Земли взять равным примерно 6350 км, тогда общая площадь Земли составит:
* * *
ГРАДУСЫ И РАДИАНЫ
Радиан определяется как величина центрального угла окружности, длина дуги которого равна радиусу окружности. Эта величина составляет примерно 55 градусов 17 минут и 44 секунды. Радиан (часто обозначаемый как рад, rad) используется в качестве единицы измерения так называемой «круговой меры угла». Если круговая мера угла в радианах равна а, то угол будет равен 180°·а/π градусов, и наоборот если угол равен G°, то круговая мера угла составит π·G/180 радиан.
То есть угол в 360° полной окружности составит 2·π радиан. В общем случае эти вычисления осуществляются следующим образом.
Если π радиан соответствует 180°, то R радиан соответствует G°, что дает нам следующую пропорцию: π/180 = R/G. Например, сколько радиан имеет угол в 30°? Подставляя в формулу, получим π/180 = R/30, откуда находим R:
R = (30·π/180) = π/6 рад.
Мы также можем решить обратную задачу. Сколько градусов имеет угол в π/4 радиан? Подставляя в формулу, получим
π/180 = (π/4)/G, откуда находим G:
G = ((π/4)·180)/π = 45°
* * *
Применим теперь формулу для объема и получим:
V = (4·π·6350>3)/3 = 1,072499199·10>12·км>3
С этими результатами мы можем вычислить площадь октанта, одной восьмой части земной поверхности. Просто разделим значение площади Земли на 8. Это дает нам 63336566,88 км>2.
Как мы видим, каждый октант очерчивает сферический треугольник с углами 90° = π/2 радиан. Обратите внимание, что общая сумма составляет 270° = Зπ/2 радиан (то есть более чем 180° = π радиан). Тогда чему будет равна каждая из сторон?
Каждая из сторон представляет собой дугу большого круга. Используя формулу для длины дуги, получим:
(α·R) = (π/2)·6350 = 9 974,2625 км
Этот же результат можно получить и другим способом: разделить длину большого круга на четыре (напомним, что длина окружности составляет 2πR):
(2π·6350)/4 = 9974,2625 км.
Ясно, что ту же процедуру можно повторить для Луны, радиус которой равен 1736 км.
* * *
ДЛИНА ДУГИ КРУГОВОГО СЕКТОРА
Для части окружности с центром O и радиусом r, изображенной на рисунке, обозначим α угол, измеряемый, как правило, в радианах, а с — дугу между точками А и B. Тогда длина дуги выражается следующим образом: с = α·r.
Имея дело с длиной стороны сферического треугольника, мы обычно используем круговую меру угла, которую фактически нужно лишь умножить на радиус.
* * *
Вернемся к нашему общему вопросу. Геодезической линией называется кратчайшая линия, соединяющая две точки на поверхности и сама принадлежащая этой поверхности. На совершенно плоской, то есть евклидовой поверхности, геодезической линией является отрезок. Между двумя точками А и В на сферической поверхности из всех окружностей, проходящих через эти точки и расположенных на этой сфере, геодезической линией является большой круг. Другими словами, геодезическая линия получается путем пересечения сферы плоскостью АОВ. Таким образом, геодезическим отрезком между точками А и В является меньшая из дуг большого круга, проходящего через А и В. Обратите внимание, что случай с этим кругом — единственный, когда А и В не являются диаметрально противоположными точками.
В геометрии на сфере прямыми линиями являются дуги больших кругов. Таким образом, параллельные линии не существуют, так как большие круги всегда пересекаются в диаметрально противоположных точках. Для наглядности достаточно взглянуть на дольки очищенного апельсина.
* * *
ПОВЕРХНОСТЬ ЗЕМЛИ
Является ли единственным кратчайший путь между двумя европейскими столицами, например, между Лондоном и Парижем? Ответ на этот вопрос положителен: существует только одна геодезическая линия, соединяющая эти города. Аналогично, уникален ли маршрут между Северным и Южным полюсами? Здесь ответ отрицательный: существует бесконечное количество геодезических линий, соединяющих эти две точки, так как они диаметрально противоположны.
Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.
Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.