Книга Бытия. Общая история происхождения - [25]
Если нарушение симметрии в художественном поле – свободный творческий акт, вызывающий удивление и восхищение, то почему бы и природе не поддаться тому же искушению?
Чтобы лучше понять, какую роль играет спонтанность в симметричных структурах физики, воспользуемся примером из механики: представим карандаш, стоящий на своем остром кончике на плоской поверхности. Его начальное положение совершенно симметрично. Карандаш может поворачиваться вокруг своей оси, и законы физики для него не изменятся, потому что гравитационное поле симметрично относительно поворотов вокруг его оси. И значит, падая на плоскую поверхность, карандаш может принять любое направление. Его симметричное состояние нестабильно, и, как только его предоставят самому себе, он упадет. Лежа на горизонтальной поверхности, он будет в стабильном состоянии, но вращательная симметрия окажется нарушенной, так как он выбрал какое-то одно из возможных направлений. Падая на поверхность, карандаш потерял энергию и симметрию, но приобрел стабильность и множественность состояний.
Что-то подобное и произошло в ранней Вселенной. Начальное горячее состояние было очень симметричным, но зато неустойчивым; остывая, Вселенная теряла симметрию, но обретала устойчивость.
Но каким было состояние с меньшей энергией, в котором Вселенная пребывала? Какой механизм мог вызвать спонтанное нарушение электрослабой симметрии?
Эта проблема стала очевидна уже с первым плачем новорожденной теории, и для нее были предложены разнообразные решения, ни одно из которых не обладает достаточной убедительностью. Правильная идея появилась только в 1964 году – ее предложили трое молодых физиков, едва перешагнувших тридцатилетний рубеж: два бельгийца Роберт Браут и Франсуа Энглер и их почти ровесник из Великобритании Питер Хиггс.
И снова какие-то юнцы проталкивают новую идею, противоречащую всем схемам, и ее никто не принимает всерьез, потому что она по-настоящему революционна.
Если два взаимодействия описываются одними и теми же уравнениями, то нарушение симметрии может затрагивать только среду, в которой они распространяются, – то есть вакуум. Другими словами, это в вакууме оказывается нарушенной симметрия. Потому что вакуум… совсем не пуст. Некое поле присутствует в каждом уголке Вселенной с незапамятных времен. Это поле Хиггса, а связанную с ним элементарную частицу следует добавить к другим фундаментальным частицам Стандартной модели. Только так можно объяснить, почему слабое взаимодействие и электромагнитное ведут себя столь непохожим образом, что трудно заподозрить их родство, даже отдаленное.
А в маленькой раскаленной первоначальной Вселенной поле Хиггса было в возбужденном состоянии – и из-за этого все вокруг было идеально симметрично. Стоило температуре уменьшиться, как оно застыло в состоянии равновесия с меньшей энергией – и от этого нарушилась изначальная симметрия. Бозоны W и Z становятся массивными оттого, что поле их изрядно запутывает, словно сеть, а фотон ускользает из нее и продолжает повсюду носиться, лишенный массы, так как его поле даже не пощекотало.
Аналогичный механизм объясняет, почему у лептонов и кварков такие разные массы. Они тоже все родились демократично лишенными массы. Это поле Хиггса их разделило, дав кому-то массу побольше, а кому-то поменьше. Чем сильнее взаимодействие с полем, тем больше масса частицы.
Все разрешилось вполне элегантно, оставалась только сущая мелочь… А точно ли существовало это поле Хиггса? Кто мог быть уверен, что именно это элегантное решение выбрала природа? Если где-то есть такое поле, из него должна выскочить ассоциированная с ним частица! Так начиналась великая экспедиция в поисках бозона Хиггса.
Открытие бозона Хиггса
Потребовалось почти пятьдесят лет, чтобы убедиться: механизм Хиггса и в самом деле ответственен за нарушение электрослабой симметрии. Столько времени длилась охота на самую неуловимую частицу в истории физики.
Теория не предсказывала, какой должна быть масса бозона Хиггса, а потому он мог прятаться где угодно. На протяжении десятилетий ученые всего мира прилагали сверхчеловеческие усилия, чтобы поймать новую частицу, но все было тщетно. Сейчас, когда мы ее уже открыли, мы знаем, что это большая удача, так как бозон Хиггса оказался слишком тяжелым и до 2010 года энергии ускорителей просто не хватало для его появления. Поворотным пунктом стал запуск Большого адронного коллайдера – ускорителя ЦЕРН под Женевой.
Ускорители частиц – это современные машины времени: они переносят нас вспять на миллиарды лет, давая возможность изучать процессы, разворачивающиеся во Вселенной близко к моменту ее рождения. При столкновениях сотрясается вакуум – и из него рождаются новые материальные частицы. Тут проявляется знаменитое эйнштейновское соотношение эквивалентности массы и энергии. При столкновении встречных пучков элементарных частиц энергия столкновения может трансформироваться в массу: E = mc>2, чем больше энергия столкновения, тем более тяжелые частицы могут образоваться и позволить изучать себя во всех деталях. Так что ускорители – это настоящие фабрики вымерших частиц, возвращающие к жизни на долю секунды те формы материи, которые исчезли сразу после Большого взрыва.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
Описана система скоростной конспективной записи, позволяющая повысить в несколько раз скорость записи и при этом получить конспект, удобный для чтения и способствующий запоминанию материала. Излагаемая система позволяет на общей основе создать каждому человеку личные приемы записи, эриентированные на специфику конспектируемых текстов.Книга может быть полезна студентам, школьникам старших классов, научным работникам, слушателям курсов повышения квалификации.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр.
В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке. В формате PDF A4 сохранен издательский макет.
Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.