Книга Бытия. Общая история происхождения - [18]
Но если мы используем самые современные инструменты и расширяем свой горизонт так, чтобы он охватывал космос целиком, эти частные различия становятся несущественными. В недавних экспериментах были каталогизированы двести тысяч галактик, и вот неизбежный вывод: в масштабах сотен миллионов световых лет встречающиеся структуры почти всегда очень сходны, практически идентичны. Одним словом, наша Вселенная, столь чудесная и разнообразная на местном уровне, становится исключительно монотонной, если не сказать скучной, стоит только перейти к более крупному масштабу.
Однородность становится еще более поразительной, если обратиться к распределению температуры. Начиная с 1970-х годов для изучения деталей космического микроволнового фонового излучения систематически используются инструменты, установленные на спутниках. Избавившись таким образом от помех, создаваемых возмущениями земной атмосферы, ученые смогли делать измерения значительно более точные, а главное – в любых диапазонах длин волн. И тем не менее потребовалось двадцать лет, чтобы получить первые результаты, которые начиная с девяностых годов стали предоставлять сенсационные подтверждения теории космической инфляции.
Они показывают впечатляющие однородность и изотропность Вселенной. Распределение температур оказалось в точности предсказано теорией: Вселенная ведет себя как гигантская микроволновка, которая перестала работать в далеком прошлом и с тех пор равномерно остывает, из-за того что расширяется. Области, разделенные миллиардами световых лет, показывают одну и ту же температуру, измеренную до какой-то идиотической точности: 2,72548 градуса выше абсолютного нуля. Космическое микроволновое фоновое излучение изотропно, то есть одно и то же во всех направлениях, с точностью не хуже одной стотысячной.
Какой механизм мог бы обеспечить передачу энергии на такие расстояния, с тем чтобы выравнять температуры до подобной однородности?
Свет не годится, так как к моменту его появления Вселенная уже была огромной: около сотни миллионов световых лет. И эти расстояния слишком большие, чтобы свет мог уровнять случайные колебания температуры. К тому времени различные части Вселенной были уже приведены в соответствие друг с другом, чтобы оказаться с одной и той же температурой на расстоянии в сотни миллионов световых лет.
Только космическая инфляция позволяет понять, как такое могло стать возможным. Все предложенные альтернативные механизмы привели к результатам значительно менее правдоподобным.
Перед началом инфляции все части крошечного пузырька, борющегося с путами квантовой механики, были в контакте друг с другом, словно точка “Космикомических историй” Кальвино. Будучи в состоянии обмениваться информацией, они все оказались с одинаковыми свойствами, в частности с одной и той же температурой. Инфляционное расширение распространило эту однородность на космические масштабы и сделало ее общим свойством Вселенной. При этом оно же безмерно укрупнило бесконечно малые квантовые флуктуации, имевшиеся внутри первичного пузырька. Мельчайшие флуктуации, раздуваясь в пространстве, достигли космических масштабов, превратившись в итоге в скопления галактик. Расширяясь до космических масштабов, эта мелкая рябь в плотности энергии превратилась в тончайшую сеть, широко раскинувшую свои узлы, становившиеся семенами новых агломератов материи. Эти вариации плотности уплотняли и нити темной материи, собирали вокруг себя пыль и газ, а вокруг них рождались первые звезды и формировались первые галактики.
Из этой горячей связки, жестко детерминированной и одновременно хаотической, между звездными расстояниями космоса и бесконечно малым миром квантовой механики, родились материальные структуры, давшие начало красоте и развитию. Мир без флуктуаций не смог бы породить звезды, галактики и планеты. В совершенной Вселенной не было бы ни весеннего ветерка, ни девичьей улыбки. Мы все произошли от аномалии, которую назвали инфляцией и которая довела квантовую пену до того, что она приобрела космические размеры.
Когда самые изощренные из инструментов, установленные на космических зондах, показали изотропность распределения в точности такой, как предсказывала теория для инфляционных моделей, даже самые упертые из ее противников были вынуждены признать ее предсказательную силу.
И все же оставалась одна колоссальная трудность, чреватая новым кризисом и грозившая развалить все, словно карточный домик. Инфляция и в самом деле с необходимостью приводит Вселенную к состоянию с нулевой локальной кривизной, то есть ее пространство оказывается плоским. Кривизна пространства-времени зависит от плотности содержащихся в нем материи и энергии. При плотности, в точности равной критической, Вселенная оказывается плоской, ее локальная кривизна равна нулю, словно у ровной поверхности, а это означает, что расширение продолжается бесконечно. При плотности больше критической Вселенная замкнута, а ее локальная кривизна положительна, как у поверхности шара, и расширение должно в этом случае замедлиться, сменившись в какой-то момент сжатием, а потом и Большим сжатием. При плотности меньше критической локальная кривизна отрицательна, как у конского седла, и в этом случае расширение тоже будет продолжаться до бесконечности.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр.
В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке. В формате PDF A4 сохранен издательский макет.
Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.