Кислород. Молекула, изменившая мир - [67]
Когда LUCA дал начало своему разнообразному потомству? Клетки, напоминающие современных прокариот, появились около 3,5 млрд лет назад (строматолиты в Юго-Западной Австралии, см. главу 3). Первые признаки появления эукариотических клеток (биомаркеры — мембранные стерины) относятся к периоду около 2,7 млрд лет назад. Самые старые ископаемые остатки эукариот имеют возраст 2,1 млрд лет. Взрыв разнообразия эукариот произошел примерно 1,8 млрд лет назад.
На фундаментальном (биохимическом) уровне эукариоты очень похожи на прокариот, но они крупнее и сложнее. По-видимому, только сложная структура эукариот могла обеспечить эволюцию многоклеточных форм жизни. Все истинные многоклеточные организмы являются эукариотами. Следовательно, можно предположить, что прокариоты были первыми примитивными клетками, которые позднее дали начало более сложным эукариотам.
Эта гипотеза подтверждается многими свойствами эукариот. В середине 1880-х гг. немецкие биологи Шмитц, Шимпер и Мейер предположили, что хлоропласты появились из цианобактерий. В 1910 г. русский биолог Константин Мережковский развил эту идею, заявив, что эукариоты возникли в результате союза между несколькими видами бактерий. Но недостаточная чувствительность микроскопического анализа того времени не позволила ему убедить биологическое сообщество в своей правоте. Идея Мережковского ждала своего часа около 70 лет, пока в конце 1970-х гг. Линн Маргулис из Университета Массачусетса в Амхерсте с помощью новых молекулярных методов не доказала, что когда-то органеллы эукариотической клетки действительно были свободноживущими бактериями.
Теперь уже всеми признано, что хлоропласты и митохондрии («электростанции» эукариотических клеток) когда-то были свободноживущими бактериями. Их выдают многие признаки. Во-первых, хлоропласты и митохондрии сохранили свой генетический аппарат, включая собственную ДНК, информационную РНК, транспортную РНК и рибосомы. Это указывает на их бактериальное происхождение. Например, митохондриальная ДНК, как и бактериальная ДНК, упакована в виде единственной кольцевой хромосомы и не связана с белками. Последовательность букв в ее генах очень напоминает соответствующую последовательность в генах пурпурной бактерии, называемой альфа-протеобактерией[47]. Митохондриальные рибосомы по размеру и структуре, а также по чувствительности к антибиотикам (например, к стрептомицину) напоминают рибосомы протеобактерий. Как и бактерии, митохондрии размножаются просто путем деления пополам, обычно независимо от других митохондрий и от самой клетки.
Но, несмотря на наличие этих древних признаков, митохондрии утратили свою независимость. За 2 млрд лет эволюции митохондрии потеряли почти весь геном. Их ближайшие родственники альфа-протеобактерии имеют 1500 генов, тогда как митохондрии большинства видов сохранили менее сотни. Как мы обсуждали в главе 3, эволюция в равной степени может приводить и к простоте, и к сложности. Все бактериальные гены, которые не были нужны для выживания внутри эукариотической клетки, быстро исчезли, поскольку ядерные гены не терпели конкуренции. Другие митохондриальные гены переместились в ядро: 90% генов, отвечающих за структуру и функцию митохондрий, теперь находятся в ядре эукариотической клетки. Мы до сих пор не знаем, почему митохондрии сохранили при себе 10% генов, но их локализация, очевидно, должна обеспечивать какие-то преимущества[48].
Составляя портрет LUCA, необходимо учитывать, что перемещение генов свободноживущих бактерий в эукариотические клетки повлияло на генетические связи между живыми организмами. Понятно, что в ядрах эукариот содержатся бактериальные гены, попавшие туда из митохондрий. Любые попытки проследить происхождение эукариот на основании этих генов приведут к ошибке, поскольку данные гены — не наследие предков, а более позднее приобретение. Но во многих отношениях за митохондриальными генами легко проследить. Во всяком случае, мы знаем их содержание и функцию. Что нам не известно, так это сколько других генов эукариот было приобретено таким же образом и какие именно. Эта проблема связана с горизонтальным переносом генов — способом передачи генетической информации, отличным от прямого наследования[49]. Если гены циркулируют так же свободно, как деньги в едином экономическом пространстве, практически невозможно установить их происхождение — они могли быть получены организмом по наследству от непосредственного предка, а могли быть перенесены из организма неродственного вида. И чем дальше мы отступаем в прошлое, тем запутаннее выглядят эти связи.
В конце 1960-х гг. генетические связи между организмами чрезвычайно заинтересовали молодого биофизика (ставшего позднее эволюционным биологом) Карла Вёзе из Университета Иллинойса. Везе понял, что определение полных последовательностей геномов организмов разных видов могло бы помочь установить степень родства между ними, невзирая на горизонтальный перенос генов. Однако в то время секвенирование таких больших массивов данных не представлялось возможным. Для определения родственных связей Вёзе решил использовать единственный ген, который не может передаваться за счет горизонтального переноса, а передается только по вертикали — из поколения в поколение. Судьба такого гена была бы однозначным образом связана с отдельными видами и, в принципе, позволяла бы восстановить ход эволюции.
Почему мы стареем и умираем? Зачем нужно половое размножение? И почему полов два, а не больше? У известного английского биохимика есть ответы и на эти вопросы, но главное – он предлагает неожиданный подход к основным проблемам биологии: как из камней, воды и воздуха появилась жизнь.
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.
Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
Интернет – это не только социальные сети, интернет-магазины и поисковые сайты. Есть и обратная сторона интернета – своего рода цифровое подполье, где царит полная анонимность, а содержимое сайтов открыто только для своих. Там можно найти все что угодно, в том числе и то, что запрещено законом. И в этой книге будут раскрыты тайны этого «подпольного интернета».
Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.
Центральная идея работ знаменитого Рэя Курцвейла — искусственный интеллект, который со временем будет властвовать во всех сферах жизни людей. В своей новой книге «Эволюция разума» Курцвейл раскрывает бесконечный потенциал возможностей в сфере обратного проектирования человеческого мозга.
Стивен Хокинг известен читателям как выдающийся физик современности, сделавший множество открытий в теории «черных дыр». А что мы знаем о Хокинге как об обычном человеке, любящем отце и муже, жизнелюбе и мечтателе, на долю которого выпали такие испытания судьбы, которые нельзя пожелать даже врагу? Джейн Хокинг была рядом с ним 26 лет, любила и разделяла с мужем все трудности. Про ее непростой опыт совместной жизни с гением, обо всех трудностях, выпавших на долю их семьи, и моментах счастья расскажет эта книга.