Кентерберийские головоломки - [80]

Шрифт
Интервал



Следующий момент состоит в том, что первый полупуть должен заканчиваться в одном из центральных рядов, а второй полупуть обязан начинаться в одном из этих рядов. Теперь это очевидно, поскольку полупути должны быть связаны друг с другом, дабы образовать целый путь, а каждая клетка внешнего ряда связана ходом коня лишь с квадратами своего типа (то есть либо с кружками, либо без кружков). Следовательно, полупути могут соединиться лишь в двух центральных рядах.

Далее, существует ровно 8 различных первых полупутей и соответственно столько же вторых полупутей. Можно заметить, что из них удается составить 12 полных путей, а это и есть число различных правильных решений нашей головоломки. Я не собираюсь их здесь полностью перечислять, однако приведу ответ в такой форме, чтобы читатель сам без труда смог их все найти. Следующие числа соответствуют клеткам рисунка с теми же номерами.

Восемь первых полупутей – это от 1 до 6 (2 пути); от 1 до 8 (1 путь); от 1 до 10 (3 пути); от 1 до 12 (1 путь) и от 1 до 14 (1 путь). Восемь вторых полупутей: от 7 до 20 (1 путь); от 9 до 20 (1 путь); от 11 до 20 (3 пути); от 13 до 20 (1 путь) и от 15 до 20 (2 пути). Каждый новый способ, каким вы сумеете связать один полупуть с другим, даст новое решение задачи. Можно определить, что эти связи таковы: с 6 на 13 (2 случая); с 10 на 13 (3 случая); с 8 на 11 (3 случая); с 8 на 15 (2 случая); с 12 на 9 (1 случай) и с 14 на 7 (1 случай). Следовательно, существует 12 различных способов соединения и соответственно 12 различных решений нашей головоломки. Можно показать, что путь, приведенный на рисунке в условии задачи, состоит из одного из трех полупутей, идущих от 1 до 10, и полупути от 13 до 20. Стоит отметить, что 10 решений порождены пятью различными путями и их обращениями; другими словами, если вы отметите на рисунке эти 5 путей линиями, а затем перевернете рисунок вверх ногами, то получите 5 новых путей. Остальные два решения симметричны (в этих случаях 12 связано с 9, а 14 – с 7), и, следовательно, не порождают новых решений с помощью поворотов.


164. Изящное симметричное решение этой головоломки показано на рисунке. Каждый из четырех кенгуру совершает свою небольшую экскурсию и возвращается в свой угол, ни разу не прыгнув в клетку, посещавшуюся другим кенгуру, и не пересекая центральной прямой.



Читателю сразу же придет в голову возможность улучшить головоломку, разделив квадрат вертикальной прямой и потребовав, чтобы кенгуру не пересекали также и ее. Это означало бы, что каждый кенгуру ограничен квадратом 4×4, но это невозможно, как я покажу в решении следующих двух головоломок.


165. Пытаясь решить эту задачу, сначала необходимо взять два различных отсека соответственно из 20 и 12 клеток и проанализировать, где могут находиться здесь места входа и выхода. В случае большего отсека можно определить, что, желая совершить на нем полное турне, мы должны начать и закончить на двух внешних клетках длинных сторон. Но, хотя вы можете начинать на любой из этих 10 клеток, выбор конечной клетки ограничен, либо (что то же самое) вы можете заканчивать, где угодно, но тогда обязаны начинать путь на некоторых определенных клетках. В случае меньшего отсека вам придется начинать и заканчивать на одной из шести клеток, принадлежащих узким концам, а остальные ограничения такие же, как и в предыдущем случае. Небольшое размышление покажет, что в случае двух малых отсеков вы должны начинать и заканчивать в прилегающих друг к другу концах, а отсюда следует, что и в больших отсеках турне должно начинаться и заканчиваться на прилегающих сторонах.



На рисунке, где показано одно из решений, можно заметить 8 мест, в которых мы можем начинать это конкретное турне; но в каждом случае существует лишь один путь, ибо мы должны закончить визиты в том отсеке, где находимся, прежде чем перейти в другой. Мы обнаружим, что в клетках, отмеченных звездочками, должны располагаться точки входа или выхода, но соображения, связанные с поворотами, наводят нас на мысль сделать другие соединения в местах, отмеченных либо ромбиками, либо кружочками. В решении, приведенном на рисунке, выбраны ромбики, но встречаются другие решения, где вместо них используются кружочки. Я думаю, что эти замечания поясняют все существенные моменты данной головоломки, которая весьма интересна и поучительна.


166. На рисунке показано, как шахматную доску можно разделить на 4 части одинаковых размеров и формы, чтобы на каждой из них можно было совершить турне конем.



Для каждого коня существуют только один путь и его обращения.


167. Если бы читатель вырезал приведенную здесь диаграмму, сложил ее в форме куба и склеил с помощью полосок вдоль ребер, у него получилась бы довольно любопытная вещица.



Ее можно выполнить в большем масштабе. Если мы представим себе, что на каждой грани куба расположена шахматная доска, то, как удается показать, мы можем начать в любой из 384 клеточек и совершить полное турне по кубу, вернувшись в конце в исходную точку. Метод перехода с одной грани на другую понять легко, но трудность, разумеется, состоит в том, чтобы определить нужные точки входа и выхода на каждой доске, порядок, в котором следует брать различные доски, и найти расположения, удовлетворяющие требуемым условиям.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.