Кентерберийские головоломки - [40]

Шрифт
Интервал


128. Восемь звезд. В этой головоломке 8 звезд нужно расположить на приведенной на рисунке доске так, чтобы пи одна звезда не оказалась на одной горизонтали, вертикали или диагонали с другой.



Вы видите, что одна звезда уже поставлена в клетку, передвигать ее нельзя, поэтому читателю придется расставить лишь 7 остальных звезд. Но вы не должны помещать звезды на заштрихованные клетки. Существует только одно решение данной головоломки.


129. Мозаика. Искусство создания рисунков или узоров из кусочков по-разному окрашенных твердых материалов очень и очень древнее. С ним, безусловно, были знакомы во времена фараонов, а в библейской книге Эсфирь мы находим упоминание о «мостовых из красного и голубого, и белого, и черного мрамора». Некоторые из дошедших до нас древних мозаик, особенно римских, показывают, что даже там, где геометрический узор и не бросается в глаза, над внешне беспорядочными расположениями их создатели в свое время изрядно поломали голову. Особенно в тех случаях, когда работа выполнялась с ограниченным числом цветов, они свидетельствуют об удивительной изобретательности, благодаря которой удалось добиться того, чтобы одинаковые оттенки не располагались вблизи друг друга. Читательницы, знакомые с искусством шитья всевозможных лоскутных одеял, покрывал, подушек и т. п., знают, сколь желательно при ограниченном выборе материала избежать близкого расположения одинаковых кусочков ткани. Наша головоломка в равной мере может относиться и к лоскутным одеялам, и, например, к выложенному плитками полу.



На рисунке видно, как квадратный участок пола можно выложить 62 квадратными плитками восьми цветов: фиолетового (Ф), красного (К), желтого (Ж), зеленого (3), оранжевого (О), розового (Р), белого (Б) и голубого (Г) так, чтобы при этом ни одна плитка не находилась на одной горизонтали, вертикали или диагонали с плиткой того же цвета «Шестьдесят четыре плитки при тех же условиях выложить было бы невозможно, но два заштрихованных квадратика заняты решетками вентиляции.

Головоломка состоит в следующем. Эти две решетки вентиляции следует переместить на квадраты, обведенные жирными линиями, а в угловые заштрихованные квадраты поместить две плитки. Сможете ли вы переместить 32 плитки так, чтобы в результате ни одна из плиток не оказалась на одной вертикали, горизонтали или диагонали с другой плиткой того же цвета?


130. Под «вуалью». Изучив приведенный здесь рисунок, читатель увидит, что я расположил на нем восемь букв V, восемь Е, восемь I и восемь L таким образом, что ни одна из букв не находится на одной горизонтали, вертикали или диагонали с такой же буквой. Так, ни одно V не лежит на одной прямой с другим V, ни одно Е – с другим Е и т. д.



Существует огромное число различных способов размещения букв при данном условии. Головоломка состоит в том, чтобы найти расположение, приводящее к наибольшему числу слов из четырех букв, которые можно читать сверху вниз, снизу вверх и по диагонали. Все повторения считаются другими словами, а всего можно использовать пять вариаций: VEIL, VILE, LEVY, LIVE и EVIL.[24]

Все станет совершенно ясным, если я скажу, что на приведенном рисунке различных слов – восемь, поскольку первая и последняя горизонталь дают VEIL, вторая и седьмая вертикаль – VEIL, а две диагонали, начинающиеся от L в 5-й горизонтали от Е в 8-й горизонтали обе дают как LIVE, так и EVIL. Всего слова можно прочитать восемь раз.

Эта трудная головоломка со словами приводится как пример использования шахматной доски при решении задач такого типа. Только тот, кто хорошо знаком с задачей о восьми ферзях, может надеяться решить ее.


131. Квадрат Баше. Одна из старейших карточных головоломок была, я полагаю, опубликована Клодом Гаспаром Баше де Мезириаком в 1624 г. В ней требовалось расположить 16 валетов, дам, королей и тузов в виде квадрата так, чтобы ни в каком ряду из четырех карт, вертикальном, горизонтальном или диагональном, не было двух карт одинаковой масти или одинакового достоинства. Это сделать довольно просто, но в головоломке требовалось указать, сколько всего существует таких способов. Выдающийся французский математик А. Лябосн в своем современном издании Баше приводит неправильный ответ. И все же головоломка очень проста. Любое расположение с помощью поворотов и зеркальных отражений, которые Баше рассматривал как новые решения, порождает еще семь расположений.

Обратите внимание, что речь идет о «ряде из четырех карт»; поэтому из диагоналей придется рассматривать лишь две большие диагонали.


132. Тридцать шесть ячеек с буквами. На рисунке показан ящик, содержащий 36 ячеек с буквами. Головоломка состоит в том, чтобы переставить ячейки таким образом, чтобы никакое А не оказалось на одной вертикали, горизонтали или диагонали с другим А, ни одно В – с другим В, ни одно С – с другим С и т. д.



Вы обнаружите, что поместить все буквы в ящик при этих условиях невозможно, однако постарайтесь поместить максимально возможное число таких букв. Естественно, разрешается пользоваться лишь буквами, изображенными на рисунке.


133. Теснота на шахматной доске.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.