Кентерберийские головоломки - [11]
– Я хотел бы, – сказал Доктор, – знать точные размеры двух других сосудов той же формы, но иного размера, которые вместе могли бы вместить ровно столько же жидкости, сколько и эти два сосуда.
Найти точные размеры, выражающиеся наименьшие ми возможными числами, – это один из самых крепких орешков, за которые я брался. Разумеется, мы пренебрегаем толщиной стеклянных стенок сосуда, а также горлышком и подставкой.
21. Головоломка Пахаря. Входивший в компанию пахарь был «Терпеньем, трудолюбием богат, За век свой вывез в поле он навоза Телег не мало; зноя иль мороза Он не боялся, скромен был и тих И заповедей слушался святых». Этот скромный человек был смущен предложением задать спутникам задачу – ведь головоломки не для простых умов вроде его, но если они настаивают, то он поведает им о том, что часто обсуждали между собой его умные соседи.
– У одного помещика из той части Суссекса, откуда я приехал, посажено в одном месте шестнадцать прекрасных дубов так, что они образуют двенадцать рядов по четыре дерева в каждом. Однажды мимо проезжал человек большой учености, который сказал, что шестнадцать деревьев можно посадить пятнадцатью рядами по четыре дерева в каждом. Не могли бы вы показать, как это сделать? Многие сомневались, вообще возможно ли это.
На рисунке показан один из многих «двенадцатирядных» способов. А как сделать пятнадцать рядов?
22. Головоломка Франклина. В компании находился и Франклин. «Не знал он отроду, что значит сплин. Не мог бы он на жизнь коситься хмуро – Был в том достойным сыном Эпикура». Это был гостеприимный и Щедрый человек: «Всегда его столы для всех накрыты, А повара и вина знамениты». Так повелось, что и в компании паломников он всегда председательствовал за одним из столов.
Однажды в харчевне где-то сразу же за Кентербери Компания потребовала от него причитающуюся головоломку. В ответ на это Франклин выставил на стол шестнадцать бутылок с номерами от 1 до 15, однако на последней бутылке был проставлен 0.
– Не иначе как, господа мои, – сказал он, – вам на память пришла сейчас головоломка с магическим квадратом, которую нам задавал этот достойный Оксфордский студент. Но я задам вам другую головоломку, которая может показаться похожей на нее, но на самом деле между ними мало общего. Перед вами выставлено в форме квадрата шестнадцать бутылок, и я прошу вас так переставить их, чтобы они образовали магический, квадрат, у которого сумма чисел вдоль каждого из десяти рядов равнялась бы 30. Но помните, что вы можете переставить не более десяти бутылок, ибо в этом случае головоломка становится более хитрой.
Эту небольшую головоломку удобно решать с помощью шестнадцати перенумерованных фишек.
23. Головоломка Сквайра.[9] «Сквайр был веселый, влюбчивый юнец Лет двадцати, кудрявый и румяный». «Он уже не раз ходил в чужой предел» и в нашем «историческом» паломничестве сопровождал своего отца Рыцаря. Без сомнения, это был человек, которого в более поздние времена непременно назвали бы дэнди, ибо «Страданиями искусных дамских рук Наряд его расшит был, словно луг, И весь искрился дивными цветами, Эмблемами, заморскими зверями…Он ярок, свеж был, как листок весенний». На рисунке к задаче 26 вы видите юношу на заднем плане с бумагой в руках – ведь «Умел читать он, рисовать, писать, На копьях биться, ловко танцевать».
И вот Рыцарь поворачивается к нему с вопросом:
– Мой сын, чем это ты там так усердно занимаешься?
– Я думаю, – ответил Сквайр, – как бы мне нарисовать одним росчерком портрет нашего покойного сюзерена, короля Эдуарда III, тому, как он умер, уже десять лет. Головоломка состоит в том, чтобы указать, где росчерк должен начинаться и где он будет заканчиваться. Тому из вас, кто первым мне это скажет, я подарю портрет.
Я привожу здесь копию оригинального рисунка, который выиграл Юрист. Стоит отметить, что паломничество началось из Соуерка 17 апреля 1387 г., а Эдуард III умер в 1377 г.
24. Головоломка Кармелита.[10] «Прыткий» Кармелит был веселым малым со сладкой речью и блестящими глазками. «Брат-сборщик был он – важная особа. Такою лестью вкрадчивою кто бы Из братьи столько в кружку мог добыть?… С приятностью монах исповедал, Охотно прегрешенья отпускал. Епитимья его была легка, Коль не скупилась грешника рука». «Звался он Губертом». Однажды, достав четыре мешочка с деньгами, он сказал:
– Если кармелит-сборщик получит пятьсот серебряных пенни, то скажите, сколькими способами он может разложить их по этим четырем мешочкам?
Славный человек объяснил, что порядок не играет роли (так что размещение 50, 100, 150, 200 считается таким же, как и размещение 200, 50, 100, 150) и что один, два или даже три мешочка могут оставаться пустыми.
25. Головоломка Священника. «Священник ехал с ними приходской. Он добр был, беден, изнурен нуждой. Его богатство – мысли и дела, Направленные против лжи и зла. Он человек был умный и ученый, Борьбой житейской, знаньем закаленный». Можно ли лучше сказать о человеке его сана! «Пусть буря, град, любая непогода Свирепствует, он в дальний край прихода Пешком на ферму бедную идет, Когда больной иль страждущий зовет». Именно о таких приходских визитах и шла речь в головоломке Священника. Он показал план части своего прихода, через которую протекала небольшая речка, через несколько сотен миль к югу впадавшая в море. Здесь приведена копия этого рисунка.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.