Карта Вселенной - [6]
Одной из первых вех в картографии стало измерение в 240 г. до н. э. окружности Земли греческим астрономом Эратосфеном. Он заметил, что в городе Сиена (современный Асуан) ежегодно в самый длинный день (летнее солнцестояние) в полдень отсутствует тень. Он знал, что в Александрии, его родном городе, расположенном ниже по Нилу на севере Египта, в этот же день Солнце находилось над городом не строго по вертикали, поэтому он измерил разницу в положении светила, посчитав угол, которую отбрасывала тень высокой башни в Александрии. С помощью геометрии и известного ему расстояния между городами он получил длину окружности Земли, всего на 16 % отличающуюся от имеющегося сегодня значения, близкого к 40 000 км.
Математика предоставила возможности для совершенно нового подхода к восприятию космоса — произошел сдвиг от мифоса к логосу, к физической и геометрической концепции астрономических явлений, которая позволила анализировать закономерности. Гиппарх из Никеи (190–120 гг. до н. э.) считается одним из величайших астрономов античного мира. Многие приписывают ему изобретение тригонометрии и создание первых эффективных моделей движения Солнца и Луны. Скорее всего, он пользовался вавилонскими хрониками затмений и положений планет. Основываясь на работах жителей Вавилона и Месопотамии, Гиппарх составил актуальный каталог звезд и разработал, как считают, первые количественные, геометрические и математические описания астрономических явлений. Во II в. н. э. астроном, математик, картограф и астролог греко-египетского происхождения по имени Клавдий Птолемей сделал следующий шаг в понимании движения небесных тел. Унаследовав от Гиппарха данные 300-летней давности, он сопоставил все астрономические таблицы и геометрические модели греческих ученых в виде всеобъемлющего трактата — «Альмагеста». Но Птолемей не просто собрал воедино данные — он создал новую модель неба, которая соответствовала всем имеющимся данным>{6}.
Физическая модель мира Птолемея состояла из встроенных сфер, и его комплексные таблицы позволяли производить расчет будущих положений планет. Для каждой планеты он использовал по четыре наблюдения за длительный период времени, что позволило получить максимальное преимущество при измерении их циклов. Самое раннее наблюдение, которое он взял для работы, относится к 700 г. до н. э. и, вероятнее всего, является результатом работы Гиппарха по сведению воедино вавилонских хроник. Если учесть, что ключевой интерес в отношении положений планет все еще был связан с прогнозированием земных явлений, никого не удивит, что Птолемей обратился также к земной картографии. В то время как «Альмагест» указывает положения планет на небе, а также лунные циклы, его аналог под названием «Географика» содержит местоположения городов и опознавательных ориентиров на Земле. Птолемей воспринимал обе карты в тандеме: выстроив порядок небесного царства с помощью вложенных сфер, он закрепил местоположения всех известных земных точек на сетке. Так как планеты и Солнце движутся по эклиптике, Птолемей воспользовался эклиптическими координатами — сеткой с Землей по центру в том виде, в котором она представляется с внешней стороны небесной сферы, — для создания карты звездного каталога. С этого момента Земля и небо проецировались с помощью координат на поверхности сферы. Птолемей создал карту небес на основании постоянной привязки к эклиптике, а карту Земли — к широте, измеренной от экватора. Возможность предсказывать положения небесных тел позволила «Альмагесту» сохранять значимость на протяжении Средних веков.
Греки также разработали математический аппарат для изучения дуг, составляющих половину круга, и углов, противолежащих хордам, которые соединяют центр круга с его окружностью. Но математика, конечно, черпала новое и за пределами Греции. Индийцы дополнили математику эллинов. В частности, математику Ариабхате, который занимался исследованиями в V в. н. э., приписывают описание тригонометрических функций через бесконечные ряды, что позволило ему разработать подробные таблицы значений для синусов и косинусов углов. Для отображения неба на небесном глобусе и Земли на земном глобусе требовалось приложить двумерную Евклидову геометрию к изогнутым поверхностям. В период с VII по XI в. арабы и индийцы создавали сферическую тригонометрию. Расширение геометрии для описания отношений между сторонами и углами треугольников на поверхности сферы имело решающее значение для астрономии, для определения местоположения звезд на глобусе, для геодезии, для понимания влияния кривизны Земли при навигации, так как отдаленные точки Земли теперь становились более доступными.
Развивающиеся торговые маршруты способствовали знакомству персидских и арабских математиков с новыми знаниями индийской математики, которые они транслировали и широко распространяли по всему средневековому исламскому миру. Математик Ал-Джайяни из Аль-Андалуса написал работу, которую считают первым всеобъемлющим трактатом по сферической тригонометрии, — это «Книга о неизвестных дугах сферы» («Китаб маджхулат киси ал-кура»). Применив теорему Птолемея, определяющую долготную разницу между двумя точками на Земле в терминах их разницы по широте и расстоянием по дуге большого круга между ними, математик Рейхан Аль-Бируни в XI в. использовал маршруты караванов для получения разницы в широте между Багдадом и другими городами
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.