Карта и территория. Риск, человеческая природа и проблемы прогнозирования - [19]

Шрифт
Интервал

В реальности эти условия практически никогда не выполняются. Специалисты по статистике изобрели способы измерять и частично устранять эффект невыполнения необходимых допущений. Например, статистика Дарбина — Уотсона (D — W) характеризует степень сериальной корреляции остатков. D — W варьирует от 0 до 4,0. D — W, равная 2,0, означает, что остатки не коррелируют, а D — W менее 2,0 указывает на положительную сериальную корреляцию, которая приводит к завышению статистической значимости независимых переменных (см. обсуждение t-статистики и статистической значимости ниже)20. Сериальная корреляция характерна практически для всех экономических временных рядов, так как остаток предыдущего квартала в реальности оказывают влияние на остаток текущего квартала. Преобразование уровня временных рядов в абсолютное изменение снижает сериальную корреляцию регрессии, однако при этом теряется важная информация. Лично я при анализе предпочитаю иметь дело с сериальной корреляцией.

T-статистика — это характеристика «статистической значимости» независимой переменной, т. е. вероятности, что ее коэффициент отличен от нуля21. Чем выше t-статистика, тем выше вероятность того, что взаимосвязь между независимой и зависимой переменными реальна, а не случайна. Чтобы экономисты приняли независимую переменную в качестве «причины» изменения зависимой переменной, t-статистика, положительная или отрицательная, должна быть выше 2,0. Оценочная функция Ньюи — Уэста характеризует смещение t-статистики в результате сериальной корреляции и корректирует ее значения так, чтобы они более точно отражали реальные вероятности.

Еще одно заметное смещение во многих экономических корреляциях возникает, когда два временных ряда, связанных очень слабо либо не связанных вовсе, демонстрируют высокий R2 при определении регрессионной зависимости относительно друг друга, поскольку оба ряда отражают рост населения. Это смещение в значительной мере устраняется, если представить зависимую и независимую переменные в расчете на душу населения.

В примере 7.3 представлен типичный образец регрессионного анализа. Зависимая переменная — капиталовложения как доля денежного потока в нефинансовых организациях. Мы собираем квартальные данные не только по зависимым переменным, но и по трем независимым22 с 1970 г. по сей день. Регрессия зависимой переменной строится по трем независимым переменным, и в результате мы получаем аппроксимированную оценку доли капиталовложений от денежного потока. При R2, равном 0,76, мы фактически «объясняем» три четверти разброса этой доли. Как видно на графике в этом примере, аппроксимированный ряд близок к реальной доле. С учетом корректировки Ньюи — Уэста значения t-статистики значительно превышают 2,0, а значит вероятность того, что эта взаимосвязь случайна, можно исключить. D — W составляет всего 0,94, показывая, что сериальная корреляция умеренна. Но как следует из графика, это не мешает независимым переменным следовать за зависимыми во время взлетов и падений. Более того, если мы разделим 43-летний период регрессии на две равные части, результаты для более коротких периодов будут идентичны результатам полной регрессии. Это полезный тест, позволяющий понять, изменилось ли за 43 года влияние независимых переменных на зависимые. Результаты этого теста показывают, что не изменилось.

Кроме того, в примере B.1 я разделяю вклад независимых переменных в прогнозное значение. Это наглядно демонстрирует, что в разные моменты 40-летнего периода вклад каждой независимой переменной неодинаков. Так, коэффициент загрузки был преобладающим фактором в 2008 г., а в последующие кварталы наибольший вклад вносили дефицит бюджета с учетом цикличности и спред доходностей, а также, если взять шире, капиталовложения как доля денежного потока в нефинансовых организациях.

Деформации вероятностных распределений в поведенческой экономике не влияют на принципы эконометрики. Экономические действия руководителей компаний и потребителей определяются вероятностными распределениями, которые я привожу в приложении А. Они, являясь результатом взаимодействия рационального и иррационального начал, представляют собой зависимую переменную, и подходить к ним надо соответствующим образом. В конце концов, вероятностный анализ в равной мере применим и к объективным техническим данным, и к необъективным действиям людей.

Предостережение

Необходимо четко различать корреляцию (которую можно оценить с помощью регрессионного анализа) и причинную обусловленность (которую нельзя оценить). Высокий R2 и высокое значение t-статистики сами по себе не обязательно являются надежным показателем причинной обусловленности. Регрессионный анализ оказался одним из наиболее эффективных методов предсказания причин и следствий в экономике. Однако не следует забывать, что корреляция или взаимосвязь — это не то же самое, что причинная обусловленность. Ее необходимо подкреплять глубоким экономическим обоснованием взаимосвязи.

Регрессионные уравнения, как и экономические тождества (см. пояснение 9.3) являются наиболее значимыми входными параметрами макроэкономических моделей. Регрессионный анализ получил широкое распространение лишь с развитием вычислительной техники. В 1950-х гг. оценка регрессии на настольном калькуляторе того времени занимала у меня часы и даже дни. С современными компьютерами и программным обеспечением мне нужно нажать всего несколько клавиш, чтобы получить результат.


Еще от автора Алан Гринспен
Капитализм в Америке: История

История о том, как 13 колоний из мирового захолустья сумели создать самую мощную экономику когда-либо известную человечеству. 300 лет назад Америка была лишь совокупностью разрозненных поселений на краю обитаемого мира. Сначала она обеспечила благосостояние своих граждан, а затем экспортировала процветание по всему миру в форме изобретений и идей. Сегодня Америка занимает лидирующие позиции в ряде отраслей – от разработки природных ресурсов до биотехнологий. Но другие быстро растущие державы отбирают у нее экономическое первенство.


Эпоха потрясений. Проблемы и перспективы мировой финансовой системы

Книга Алана Гринспена. возглавлявшего Федеральную резервную систему США более 18 лет не похожа на те мемуары, которые обычно пишут сошедшие со сцены политики и государственные деятели. Это скорее глобальный экономический анализ, в основе которого лежат личный опыт и мировоззрение последовательного защитника рыночной системы. Именно поэтому книга состоит из двух частей. Первая посвящена формированию личности автора и становлению его взглядов, а вторая - концептуальной основе понимания новой глобальной экономики, в которой мы живем сегодня.В книге рассматриваются важнейшие элементы развивающейся глобальной среды: принципы управления, восходящие к эпохе Просвещения; энергетическая инфраструктура; глобальные финансовые дисбалансы и коренные изменения мировой демографической ситуации, создающие угрозу дальнейшему развитию; обеспокоенность по поводу справедливости распределения результатов.


Рекомендуем почитать
Твин Пикс. Беседы создателя сериала Марка Фроста с главными героями, записанные журналистом Брэдом Дьюксом

К выходу самой громкой сериальной премьеры этого года! Спустя 25 лет Твин Пикс раскрывает секреты: история создания сериала из первых уст, эксклюзивные кадры, интервью с Дэвидом Линчем и исполнителями главных ролей сериала.Кто же все-таки убил Лору Палмер? Знали ли сами актеры ответ на этот вопрос? Что означает белая лошадь? Кто такой карлик? И что же все-таки в красной комнате?Эта книга – ключ от комнаты. Не красной, а той, где все герои сериала сидят и беседуют о самом главном. И вот на ваших глазах начинает формироваться история Твин Пикс.


Почему в России не Финляндия?

Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.


Русская жизнь-цитаты-Июнь-2017

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Газета Завтра 1228 (24 2017)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О своем романе «Бремя страстей человеческих»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Газета Завтра 1225 (21 2017)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.