Кара небесная. Космическое миропонимание - [77]

Шрифт
Интервал

ɑ>ⱪ = a>0 · k >n – 1, (8)

где a>0 – первый член геометрической прогрессии.

k – знаменатель прогрессии,

n – порядковые номера планет.

На основании квантования орбитальных площадей нами установлено, что

k = √ 3 = 1,732

Расстояние от Земли до Солнца принимаем за единицу R = 1, тогда a>0 = 0,333.

Средняя погрешность расстояний планет, полученных по формуле Тициуса – Боде, составляет ± 9.1 %. По предложенной формуле погрешность составила ± 1,15 %. Вполне резонно считать эта погрешность обусловлена точностью современных измерений. Лучшей является аппроксимация первоначальных средних расстояний планет от Солнца с учётом квантования площадей орбит в геометрической прогрессии.

Устройство нашей Солнечной системы значительно сложнее, чем это представлялось ранее. Вместе с тем, Солнечная система может быть достаточно информативно представлена орбитами планет окружностями среднего радиуса.

Если расположить Солнце в начале координат, то изображение всех орбит определяет правило:

Орбита любой планеты, когда Солнце находится в начале координат, пересекает ось прямоугольных координат в точке, проведя через которую прямую линию под углом в 30>0 получим пересечение орбиты внутренней планеты с другой координатной осью, а под углом в 60>0 – пересечение орбиты внешней планеты.

Планетарная туманность после окончания излияния вещества с поверхности Солнца прекратила своё расширение, достигнув пределов орбиты Урана. При этом ударная волна длиной λст = 4,48 астрономических единиц превратилась в стоячую. В районах пучностей, около орбит Венеры и Юпитера, происходила концентрация выброшенного вещества, и, наоборот, около орбит Марса и Фаэтона, ударной волной срывалась их атмосфера и поверхность. Степень разрушения поверхности Марса от ударных волн можно судить по основанию вулкана Олимп. Сейчас он возвышается над поверхностью планеты на 27 километров, что в три раза превышает высоту Эвереста. На его основании имеются чёткие отметины былой поверхности Марса, которая была углублена в этом районе на 9 километров. Ударная волна сделала поверхность этой планеты безжизненной пустыней. По этим причинам планетарная туманность имела форму двояко вогнутой линзы. Среди множества идей о развитии Земли, высказанных в прошлом, концепция растущей Земли занимает особое место. В ней используется принципиально новая теоретическая основа для анализа и осмысления накопленных в геологии фактов. Термин «растущая Земля» впервые предложил В.П. Иванкин, бывший в 1974-1981 г. директором НижнеВолжского научно-исследовательского института геологии и геофизики (НВНИИГГ). Идею растущей Земли детально сформулировал в конце 80-х гг. ХIХ в. русский инженер И.О. Ярковский (1844-1902 гг.).

Принимая рост Земли, мы приходим ко многим интересным выводам. Главнейшим из которых является указание на то, что в недавней геологической истории земная кора была общепланетарной. Первым подобную догадку высказал О.Х. Хильгенберг в 1933 году. Немецкий учёный предположил, что Земля была так мала, что все материки на её поверхности непосредственно смыкались, а океанов попросту ещё не было. Позднее выпало много астероидов, комет и метеоров, началось осаждение плотной атмосферы планеты, выпадение огромного количества водных растворов, в результате чего единая континентальная кора стала разрываться.

Отт Кристоф Хильгенберг в 1933 году в своей работе «Vom wachsenden Erdball» предложил одну из моделей расширяющейся Земли. Австралийский геолог Сэмюел Кэри развивал гипотезу расширяющейся Земли в послевоенные годы. Российский геолог Владимир Ларин, автор металлогидридной теории строения Земли, в своей книге «Наша Земля (происхождение, состав, строение и развитие изначально гидридной Земли)», выпущенной в 2005 году, утверждал, что Земля постоянно расширялась и росла в объёме. В Советском Союзе идеей расширения Земли занялся с 1949 года И.В. Кириллов. Он приводил тот факт, что в океанах не существует океанической коры старше 150 млн. лет. Кириллов для доказательства своей теории изготовил глобус из «чисто материковой коры», который демонстрируется в минералогическом музее им. В.В. Ершова Московского Государственного Горного Университета.

Многие исследователи считают, что сила тяжести на Земле со временем возростает в процессе роста Земли из-за увеличения её массы, выпадающих на её поверхность астероидов, метеоров и метеоритов. Этот тезис подтверждает тот факт, что крупные древние пресмыкающиеся всё больше и больше приспосабливались к жизни в воде, ища убежища и уходя туда из-за увеличивающейся силы тяжести на суше. Интересную закономерность выявляет И.А. Ефремов, известный писатель и палеонтолог, который замечает: «юрские зауроподы могли обитать на глубине до 3 м, верхнеюрские, как диплодок, на 4-5 м, нижнемеловые брахнозавры могли кормиться уже на глубине до 8 м». Кроме того, в воде они, в соответствии с законом Архимеда, теряли часть своего веса тела.

Геология изучает реальные структуры и процессы на обширном естественном полигоне, именуемом Землей. Систематическое изучение земной коры началось на материках. Сведения о земной коре, вначале разрозненные, уже к концу ХІХ в. были объединены научной теорией. Дальнейшее накопление сведений о земной коре континентов и их осмысление осуществлялось на основании геологических карт, которые к середине ХХ века отразили всю поверхность Земного шара. Именно на геологических картах континентов была обнаружена возрастная и структурная неоднородность земной коры. Карты содержат огромную информацию о мощности коры, ее строении, породном и элементном составе, возрасте, слоистости, расположении структур в процессе роста. Большое значение геологическим картам придавал Н. С. Шатский [57], отметив, что геологическая карта «… есть важнейшее эмпирическое обобщение в геологической науке». Карты являются результатом работы огромной армии исследователей. Поэтому они дают достоверную и устойчивую во времени информацию.


Рекомендуем почитать
Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Сейчас. Физика времени

Ричард Мюллер, профессор Калифорнийского университета в Беркли, собирает все достижения современной физики и предлагает нам сложить из них пазл. Он рассказывает об открытиях Эйнштейна, о черных дырах, в которых, возможно, сосредоточена большая часть энтропии Вселенной, делится последними новостями из квантовой физики, а также исследует три модели движения времени.Книга будет интересна студентам и преподавателям, а также всем, кто интересуется физикой и концепцией времени и хочет расширить свой кругозор.На русском языке публикуется впервые.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.


Бегство от удивлений

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.