Кара небесная. Космическое миропонимание - [58]
Некоторые учёные такое странное движение Луны объясняют гравитационными воздействиями на неё со стороны Земли и Солнца. Однако частотный анализ этого движения показывает, что частоты колебаний орбиты Луны не соизмеримы с её частотой обращения вокруг Земли и периодами года. Чем же тогда вызваны странности лунной орбиты? Мы уверены, что такое движение Луны вокруг Земли произошло вследствие воздействия на неё ударных волн. Луна, как гармонический осциллятор, изначально обладала почти круговой орбитой. Её устойчивость определялась упругостью лунной орбиты
a = 4π 2m / T >2,
где T – период обращения Луны вокруг Земли;
m – её масса, равная 7 · 10>22 килограмм.
Численное значение упругости лунной орбиты a = 5 · 10>11 кг / с>2.
В настоящее время чаще всего среднее перигейное расстояние Луны от Земли составляет 363300 километров, а наименьшее – 356410 километров. Смещение перигейного расстояния составляет ∆q = 6890 километров. Сила отклонения орбиты F под действием ударных волн составила
F=∆q · a = 3,4 · 10>18 Н.
В результате такого силового воздействия Луна на своей орбите получила дополнительное колебание с периодом T = 18 лет 7 месяцев. Она была выведена из состояния равновесия за 1 / 4 этого периода, то есть за
∆ T = 4 года 7 месяцев 24 дня, или 14,688 · 10>7 секунд. Это и есть продолжительность ударного воздействия на Луну и Землю после взрыва поверхности Солнца.
Важно также знать продолжительность расширения планетарной туманности до пределов земной орбиты. Она будет служить ориентиром времени предупреждения жителей Земли во время будущего подобного катаклизма. Расчёты показывают, что приближение ударной волны будет воочию наблюдаться жителями Земли около 45 суток. Как сберечь Землю и всё живое на ней? Для сохранения земной цивилизации человечество должно найти достойное решение.
4 года 7 месяцев 24, или около 1700 суток, наша планетарная туманность после орбиты Земли продолжала расширяться по спирали. За это время её ударная волна прошла дополнительное расстояние 18,2 а. е. Средняя скорость этого расширения равнялась 18,6 километров в секунду. Если принять, что планетарная туманность расширялась равнозамедленно, то в пределах земной орбиты её скорость расширения была в два раза больше, то есть она равнялась 37,2 километров в секунду. Солнце обстреливало планеты и их спутники, словно артиллерийскими снарядами. Недаром на поверхности Луны (Рис. 65, 66) мы видим воронки от их ударов. Поток вещества последовательно перемещал орбиту Луны со скоростью ∆v = ∆q /∆T = 4,7 сантиметров в секунду. Тогда по закону сохранения импульсов можно записать:
∆ m · vс = ∆v· m,
на основании, которого можно определить массу вещества, который непосредственно обрушился на Луну за время расширения планетарной туманности, то есть
∆ m = ∆v· m / vс = 0,047· 7 · 10>22 / 37200 = 8,8 · 10>16 килограмм, что составляет лишь ничтожную часть от всей массы Луны. Тем не менее, в воронках и кратерах Луны вполне возможно отыскать 8,8 · 10>13 тонн минералов последней космической каменной бури. Мы полагаем, что ∆ m представляет только массу космических тел, врезавшихся прямым лобовым ударом. Кроме этой массы, Луна приняла в свой состав также другие космические тела и пыль, попавшие в зону её гравитационного влияния. Впервые ударные кратеры на Луне увидел в 1610 году Галилей. Через 50 лет ее подтвердил Роберт Гук, затем геофизик А. Вегенер. Полеты космических аппаратов в последнее время показали, что наличие ударных кратеров является типичным для всех планетных тел с твердой корой. Природа и предварительная оценка возраста диффузных структур на Луне рассматривались многими учеными. Был дан анализ всей системы этих структур с точки зрения общего характера их происхождения.
Согласно обобщению, расчетных данных и результатов измерения непосредственно на лунной поверхности (Джонсон, 1991; Утрея, 1993), суммарный поток на лунную поверхность частиц с массой более 10>12 г составляет 2 х 10>19 [г см>-2 c>-1]. Структуры, имеющие размеры более 250 х 900 км, могли образоваться от падения кометы с диаметром ядра 200 – 500 м при скорости соударения 20 км/с (Шульц, Срнка, 1980). Область имеет довольно сложное строение, образована в результате контакта с несколькими кометными телами разных размеров или с одним телом, распавшимися в момент сближения на фрагменты.
Рис. 67. Лунный грунт под электронным микроскопом
Лунный грунт детально исследован в лабораториях самыми современными методами. Основные обнаруженные в нем химические элементы – это кислород, кремний, железо, титан, магний, кальций и алюминий. Как видим, лунный грунт состоит из веществ, которые образуются при взрывах сверхновых звёзд. Оказалось, что темные лунные материки сложены из базальтов – плагиоклаза, оливина, пироксена, ильменита. В лунных базальтах найдены благородные металлы – серебро и золото, но их содержание значительно меньше, чем в земных базальтах. А грунт материковых районов Луны состоит из анортозитов – довольно редких на Земле минералов. Интересные результаты дало изучение лунных камней под электронным микроскопом, который позволил различить форму мельчайших кристалликов. На поверхности лунных образцов найдены крохотные кратеры микронного размера. Такое строение лунной пыли свидетельствует о её происхождении в плазменном вихре в момент кристаллизации вещества.

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.