Кара небесная. Космическое миропонимание - [30]

Шрифт
Интервал

В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены методами современной радиоастрономии в космических облаках, которые являются результатом выброса оболочек звёзд. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8– и 11-атомные.

Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи. Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.

В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом [1984].

По мнению ученого, частицы, выброшенные из звёзд космической пыли, имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества вплоть до образования зародышей живой материи. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией. Вокруг ядра при космической температуре примерно 10 К формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H>2O СН>4, NH>3) диссоциируют с образованием радикалов – реакционно способных фрагментов молекул. Эти радикалы могут рекомбинировать с образованием других молекул. В результате длительного облучения может появиться более сложная смесь молекул и радикалов (HN>2HCO, CO, СНзОН, СНзС и др.) Особого внимания заслуживает нахождение органических веществ в метеоритах. Это очень важно для понимания процессов зарождения высокомолекулярных систем как предшественников жизни.



Рис. 20. Минеральный состав углистого хондрита С1 (Площади диаграммы пропорциональны весовому содержанию минералов)

Следует отметить, что метеориты принадлежат к Солнечной системе. Далее возраст метеоритов, по данным ядерной геохронологии, 4,6-4,5 миллиардов лет, что в основном совпадает с возрастом Земли и Луны. Следовательно, метеориты, несомненно, являются свидетелями формирования различных химических соединений, в том числе и органических, на самых ранних этапах развития Солнечной системы. В метеоритах найдены углеводороды, углеводы, пурины, пиримидины, аминокислоты, т. е. те химические соединения, которые входят в состав живого вещества, составляя его основу. Они встречены в углистых хондритах и астероидах, определенной структуры и состава. Естественно, что в освещении общей проблемы происхождения жизни мы не имеем права игнорировать данные о составе метеоритов. Это обстоятельство в различной степени учитывалось разными авторами гипотез о происхождении жизни. Таким образом, мы вправе сейчас рассматривать известные метеориты в качестве исторических документов – подлинных свидетелей ранней истории Солнечной системы, охватывающей также процессы формирования органических веществ.

Любой метеорит представляет собой твердое тело, состоящее из ряда минеральных фаз. Главными являются силикатная (каменная), металлическая (железоникелевая) и сульфидная (троилитовая). Встречаются также и другие фазы, но они имеют второстепенное значение по своему распространению. В метеоритах встречены различные минералы, число которых превышает 100, но главными породообразующими являются немногие (оливин, пироксен, полевые шпаты, никелистое железо, троилит и др.). Кроме того, в метеоритах встречено 20 минералов, которых нет в земной коре. К ним относятся карбиды, сульфиды и др., образование которых связано с резко восстановительными условиями. Наиболее существенны концентрации углерода, связанные с органическим веществом, в углистых хондритах.

Впервые органическое вещество в составе метеоритов выделил знаменитый химик И. Берцелиус при анализе углистого хондрита Алаис в 1834 г. Результаты его анализа были настолько впечатляющими, что сам он считал это вещество биологического происхождения. В течение XIX столетия химическими анализами было обнаружено присутствие в метеоритах твердых углеводородов, сложных соединений органики с серой и фосфором. Наиболее тщательно и обстоятельно изучались углистые хондриты, значительная часть углерода которых находится в виде органических соединений. Общее содержание углерода и некоторых других летучих веществ в углистых хондритах характеризуется следующими величинами (в вес. % ) :



Отсюда видно, что содержание углерода (а также серы и воды) максимально в углистых хондритах типа Cl, a минимально в хондритах СЗ. Таким образом, в настоящее время не подлежит сомнению то обстоятельство что в начальных телах углистых хондритов в результате самих процессов их формирования возникли сложные органические соединения как закономерный итог химической эволюции ранней Солнечной системы. Распространенность многих химических элементов в углистых хондритах типа Cl обнаруживает ряд характерных отношений, сближающих их с веществом Солнца. Иначе говоря, эти углистые хондриты представляют собой застывшее солнечное вещество, лишенное легких газов. Это очень важный вывод, доказывающий выброс зародышей солнечного вещества в открытый космос.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.