Как там у вас, на Бета-Лире? - [17]
Последнее патетическое замечание окончательно сбрасывает нас с вырубленной ступеньки, на которой, казалось, мы достаточно прочно укрепились. Потирая ушибленные места, мы хотя и досадуем, но, в общем, понимаем справедливость происходящего: и впрямь, разве это дело, чтобы все — подумать только, все! — химические элементы были радиоактивными.
И вообще, похоже, что метод Лапласа только для него и был пригоден. А если мы не Лапласы?!
«Есть вещь одна — о ней упоминание запрещено…»
В славном полку гвардейцев-гасконцев можно было говорить обо всем. Следовало обходить, притом как можно тщательнее, лишь один предмет — нос. И все с пониманием относились к этому запрету: у отважнейшего из храбрых офицеров-гасконцев Сирано де Бержерака, тонкого лирического поэта и непостижимого по своему искусству фехтовальщика, означенная часть лица была слишком уж велика[5].
В 20—30-х годах нашего века в среде химиков также не возбранялись разговоры на любую тему. Но считалось не очень этичным касаться некоторых проблем: зачем вызывать у своих коллег чувство досады, и так известно, что, пытаясь решить эти проблемы, загубила свои лучшие годы не одна сотня химиков и их соратников — физиков и геологов. Проблемы эти, сформулированные кратко и пронумерованные с канцелярской дотошностью, укладываются в три вопроса:
1. Почему аргона в атмосфере в 1000 раз больше, чем остальных инертных газов, вместе взятых?
2. В периодической системе аргон (порядковый номер 18) стоит перед калием (порядковый номер 19). Однако атомная масса аргона (39,9) заметно больше, чем калия (39,1). Но ведь с повышением порядкового номера должна увеличиваться и атомная масса. Почему же все элементы подчиняются общему правилу, а пара аргон — калий ведет себя так вызывающе?
3. Почему у калия, вопреки твердо установленному правилу, преобладает изотоп с массовым числом 39, в то время как калий-40, то есть изотоп типа 4p, которого-то и должно быть больше всего, в природном калии содержится в совсем уж жалком количестве: 0,01 %?
Конечно, в то время эти вопросы задавались отнюдь не столь академически беспристрастно. Звучали в них и недоумение, и раздражение, и даже гнев. Поэтому… Впрочем, тут, пожалуй, без комментариев не обойтись.
Комментарий к проблеме 1.
Попробуем войти в круг забот тех исследователей, которые 40–50 лет назад ломали голову над перечисленными проблемами. Представим себе хотя бы одного из этих ученых. Представим, как он, сидя ночами, в который раз пытается отыскать хоть сколько-нибудь приемлемое «потому» на «почему» первого вопроса:
— Ну хорошо, попытаюсь еще раз… Атому инертного газа тем легче ускользнуть за пределы земного притяжения, чем меньше его масса. Следовательно, меньше всего в атмосфере должно быть гелия — его и впрямь очень немного, — а больше всего в воздухе должно было бы содержаться тяжелого ксенона. Но тут-то и происходит накладка: ксенона в атмосфере содержится во много-много раз меньше, чем аргона.
Тогда, может быть, наоборот? Может быть, по какой-то неведомой причине кинетическая энергия атомов ксенона наибольшая и поэтому этот элемент легче всего покидает атмосферу? Но тогда больше всего в атмосфере должно быть самого легкого газа — гелия. Но и это не так. Больше всего аргона, этого проклятого аргона.
Возможно, содержание инертного газа в атмосфере зависит от какого-либо источника, содержащегося в породах и минералах? Но тогда гелий, безусловно, должен занимать абсолютно первое место, потому что этот элемент выделяется при радиоактивном распаде и полония, и радона, и тория, и урана, и других естественных радиоактивных элементов. А ведь больше всего аргона, этого проклятого аргона.
Но, может быть… А что, если… Ну, да ладно! А, пойду-ка я спать!
Комментарий к проблеме 2.
Тут тоже все непонятно. Хотя, может быть, непоследовательное изменение атомных масс аргона и калия есть исключение из общего правила? Не зря же придумали и очень ценят англичане поговорку: «Каждое уважающее себя правило должно иметь исключения». Но почему исключения приходятся именно на пару аргон — калий? И в чем причина этого исключения? И вообще этак любую загадку природы можно объявить исключением и успокоиться на этом. Нет, не подходит в данном случае нам английская мудрость!
Комментарий к проблеме 3.
А чего здесь комментировать, когда и так все непонятно!
Из приключенческих романов известно, что детектив только тогда добивается успеха, когда уясняет, что насморк проживающей в Лионе тетушки Мирабель, скоропалительная женитьба ее племянника Виктора на приехавшей учиться в Сорбонну наследнице лихтенштейнского престола, неожиданный выигрыш кобылой Айо Большого Рождественского Приза и небывалый по размерам пожар на верфях Сен-Марино — все это тесно связанные друг с другом события, которые и привели к смерти владельца верфей господина Браззака. Обязательное умение связывать друг с другом разрозненные и, казалось бы, не имеющие никакой взаимосвязи факты также относится к числу непременных талантов, которыми должен быть наделен настоящий ученый.
Да, хорошо было известно, что еще в 1906 году Кэмпбелл и Вуд, поместив соединения калия в ионоскоп (прибор для фиксирования радиоактивного излучения), обнаружили хоть и слабую, но несомненную радиоактивность. Известно-то известно, но внимания на это не обратили. И то сказать — в том «доисторическом» по технической оснащенности методов измерения ионизирующего излучения 1906 году радиоактивность, говорят, обнаруживали даже в дистиллированной воле! Л потом, как может быть радиоактивным элемент, находящийся в середине, почти что в начале менделеевской таблицы?!
Книга эта о радиоактивности. Той самой радиоактивности, которая была открыта на рубеже XIX и XX веков и которая во многом определила развитие не только физики, но и всех иных разделов естествознания.Без малого два десятилетия назад автор уже написал книгу о том, как явление радиоактивности послужило химии и геологии, медицине и археологии, биологии и космогонии («Ядро — выстрел!», издательство «Детская литература», 1966 г.). Но события в науке в наше время развиваются стремительно. Вот почему автору свою прежнюю книгу пришлось существенно переработать и дать ей другое название.
Данная книга уже много лет, как стала классикой у байдарочников, причем люди, далекие от водного туризма ее тоже читают с удовольствием.
Сборник очерков, посвящённых важнейшим проблемам современной химии. Для старшего школьного возраста.Данная книга является переработанным и дополненным вариантом книги «Оповідання з хімії» того же автора, вышедшей в 1960 году в издательстве «Радянська школа» на украинском языке.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.