Как работает Вселенная: Введение в современную космологию - [66]

Шрифт
Интервал

Теоретически, если падающее тело является, скажем, ракетой, оно может включить двигатели и изменить направление своего движения, начав двигаться с увеличением радиальной координаты. По мнению некоторых специалистов, пролетев через внутренний горизонт, оно снова попадает в область, где радиальная координата времениподобна, и теперь будет увеличиваться, т. е. тело окажется внутри белой дыры, через горизонт которой оно и вылетит наружу. А куда, собственно, оно вылетит? Ответа на этот вопрос никто дать не в состоянии. Непонятно ни в какой точке, ни в какой момент времени, ни вообще в какой вселенной это произойдет. Однако любителей путешествия в неизведанное ожидает одна проблема. Внутренний горизонт черной дыры с разумными с астрономической точки зрения параметрами находится слишком близко к сингулярности, и бросившийся в черную дыру будет разорван еще до того, как его пересечет. Более того, сама идея о том, что внутренний горизонт можно пересечь изнутри, является спекулятивной.

6.1.3. Вращающаяся черная дыра Керра

Последний тип черных дыр, которые мы рассмотрим, – это незаряженные, но вращающиеся черные дыры, описываемые метрикой Керра[92]. Так как большинство астрономических объектов вращаются, это, как полагают, наиболее распространенный тип черных дыр. Как и черная дыра Райсснера – Нордстрёма, черная дыра Керра имеет ограничение. Ее момент импульса при заданной массе не должен превышать критического значения, определяемого ее массой.

В этом случае центральная сингулярность будет окружена сферическим горизонтом событий. Вокруг этого горизонта будет располагаться еще одна поверхность, называемая пределом стационарности. Она имеет форму сплюснутого эллипсоида вращения и касается горизонта событий в точках, лежащих на оси вращения. Пространство между двумя этими поверхностями называется эргосферой. Доказано, что любое тело, попавшее в эргосферу, не может быть неподвижно относительно удаленного наблюдателя – оно обязано вращаться в ту же сторону, что и черная дыра. Вращающиеся в эргосфере тела могут иметь отрицательную полную энергию с учетом энергии покоя. Поэтому тело, залетевшее в эргосферу, может распасться на два тела, одно из которых имеет отрицательную энергию, а второе, по закону сохранения энергии, будет иметь большую энергию, чем исходное тело.

Если развивать идею решения энергетическо-экологических проблем при помощи черных дыр, то можно направить в эргосферу черной дыры контейнер с мусором. Часовой механизм в заданное время откроет контейнер и выбросит мусор на орбиту с отрицательной полной энергией. Ускорившийся контейнер вылетит из эргосферы, и его кинетическая энергия может быть использована в интересах народного хозяйства. Таким образом, можно получить энергию, большую чем mc2, где m – масса выброшенного мусора. Откуда же берется дополнительная энергия? Мусор, выброшенный в эргосферу, вращается в сторону, противоположную направлению вращения черной дыры. Провалившись внутрь черной дыры, он уменьшит ее момент импульса. Таким образом, энергия будет получена за счет замедления вращения черной дыры. Такой процесс был предложен Роджером Пенроузом.

Свойства световых конусов вблизи черной дыры Керра показаны на рис. 6.3. В отличие от сферически-симметричной черной дыры Шварцшильда, черная дыра Керра имеет избранное пространственное направление – ее ось вращения и направление этого вращения. Пространство вокруг черной дыры Керра тоже затягивается в это вращение. Поэтому световые конусы наклоняются не только к центру, но и в направлении вращения. Мы не можем изобразить их на двумерном рисунке, как мы делали это на рис. 6.2 для шварцшильдовской дыры, отказавшись от явного изображения оси времени. По этой причине на рис. 6.3 мы изображаем экваториальное сечение черной дыры Керра, помещаем туда некоторое количество пробных частиц (черных точек), каждая из которых синхронно вспыхивает, становясь вершиной своего светового конуса. Свет от каждой вспышки расходится в стороны, образуя расширяющуюся оболочку или фронт разбегающейся волны. Через некоторое время (в системе отсчета удаленного наблюдателя) мы фиксируем круги, образованные пересечением экваториальной плоскости и фронтов этих волн, как границы белых кружков, изображенных на рис. 6.3. Самая близкая аналогия – водоворот, на который смотрят сверху. В него бросают камешки и наблюдают, как от места падения расходятся круги на поверхности воды.

Посмотрите внимательно на рис. 6.3. Вы заметите, что круги расположены по-разному по отношению к точкам. Представьте себе большой круг вокруг центральной сингулярности, проходящей через точку. С физической точки зрения возможны три принципиально различные ситуации: а) круг включает в себя точку; б) круг не включает в себя точку, но пересекает большой круг; в) круг не включает в себя точку и не пересекает большой круг. В первом случае пробная частица может находиться в покое или двигаться в любом направлении; во втором случае пробная частица должна двигаться, но все еще может не приближаться к черной дыре и избежать падения в нее; в третьем случае пробная частица должна двигаться по направлению к сингулярности. Случай а имеет место далеко от черной дыры вне ее эргосферы, снаружи от предела стационарности; случай б имеет место в эргосфере; случай в происходит внутри горизонта событий


Рекомендуем почитать
Увлекательно о космосе. Межпланетные путешествия

В книге знаменитого учителя и ученого Я.И. Перельмана вы найдете массу тайн и загадок, познакомиться с которыми будет интересно любому! Строение Солнечной системы, объяснение тех или иных природных явлений, достижения «космической» науки и многое другое. После прочтения этой увлекательной книги вы не только познакомитесь с основами астрономии и узнаете, что таит в себе загадочный мир космоса, но и сумеете развить свое воображение и расширить кругозор.


Семеро на орбите

О групповом полете космических кораблей "Союз-6", "Союз-7" и "Союз-8".


Мир многих миров: Физики в поисках иных вселенных

Все мы живем в остатках огромного взрыва, случившегося около 14 миллиардов лет тому назад и положившего начало нашей Вселенной. Однако что предшествовало этому грандиозному событию? И какова вероятность того, что помимо нашего мира где-то существуют другие? В своей популярно написанной книге физик, профессор университета Тафтс (США) Алекс Виленкин знакомит читателя с последними научными достижениями в сфере космологии и излагает собственную теорию, доказывающую возможность — и, более того, вероятность — существования бесчисленных параллельных вселенных.


Люди Земли на Луне

35 лет назад 21 июля 1969 года в 5 часов 56 минут по московскому времени командир американского космического корабля "Аполлон-11" Нейл Армстронг впервые ступил на поверхность Луны. Через 19 минут к нему присоединился Эдвин Олдрин. На окололунной орбите в командном отсеке корабля находился третий член экипажа "Аполлона-11" Майкл Коллинз.Были ли американцы на Луне? Спекулируя на патриотических чувствах русских людей, официозные СМИ вдруг широко развернули эту дискуссию. Не для того ли, чтобы скрыть то, как "перестройщики" и "реформаторы" уничтожили советскую космическую мощь?..


Полеты по программе «Интеркосмос»

Последние два года стали важной вехой в развитии космонавтики — с помощью советской ракетно-космической техники в космосе впервые в мире побывали международные экипажи, работавшие на борту научного орбитального комплекса «Салют» — «Союз». Об этих пилотируемых полетах международных экипажей по программе «Интеркосмос» и рассказывается в данной брошюре.Брошюра рассчитана на широкий круг читателей.


Циолковский

Новая биография Константина Эдуардовича Циолковского (1857-1935), написанная доктором философских наук В.Н.Деминым, кардинально отличается ото всех предыдущих. Основоположник отечественной и мировой космонавтики представлен здесь не только как гениальный ученый и изобретатель, но и как выдающийся философ-космист, определивший мировоззренческий и методологический вектор развития науки и философии на многие десятилетия вперед. Это история духа, исканий, сомнений, ошеломляющих взлетов и трагических разочарований человека, ставшего олицетворением науки XX века.