Как постепенно дошли люди до настоящей арифметики - [65]
Немаловажной статьей среди математическихъ развлеченій были магическіе квадраты. Что такое магическій квадратъ? Это рядъ чиселъ отъ 1 и до какого-нибудь предѣла, размѣщенныхъ по клѣткамъ квадрата такъ, что сумма чиселъ по діагоналямъ и по сторонамъ остается постоянной. Вотъ примѣры, взятые изъ сборника Алькуина (этотъ ученый особенно любилъ магическіе квадраты):
Они встръчаются въ сочиненiяхъ секты «Чистыхъ братьевъ», существовавшей въ X в. по Р. X. въ г. Аль-Бассра. Эта секта приписывала магическимъ квадратамъ особенную таинственную силу. Вѣрили, что они способны измѣнить расположеніе звѣздъ при рожденіи младенца и помочь ему.
Въ концѣ ариѳметики Іоанна Севильскаго (1150 года) приведенъ такой магическій квадратъ:
Объясненія не дано, только помѣщены тѣ же самыя черточки, какія и на этомъ чертежѣ.
Исторія алгебры.
Хотя народы древвяго міра не знали нашей алгебры, но это не мѣшало имъ заниматься такими вопросами, которые принадлежатъ, собственно говоря, алгебрѣ. Еще у египтянъ въ древнѣйшей рукописи-папирусѣ Ринда рѣшаются уравненія первой степени съ однимъ неизвѣстнымъ; въ этихъ уравненіяхъ мы встрѣчаемъ и знаки, напр., своеобразный знакъ равенства / / . Задача помѣщена, между прочимъ, такая: «⅔ цѣлаго числа вмѣстѣ съ его ½, и >1/>7 и съ этимъ же цѣлымъ числомъ даютъ 33, найти неизвѣстное»; прежде всего отбираются извѣстные члены въ одну часть, а неизвѣстные въ другую, коэффиціенты при неизвѣстныхъ представляются основными дробями (т. е. съ числителемъ 1) или же выражаются въ одинаковыхъ доляхъ и складываются; величина неизвѣстнаго опредѣляется такъ: въ первомъ случаѣ умножается коэффиціентъ на подходящее число, такъ чтобы въ произведеніи получился извѣстный членъ, а во второмъ множатъ извѣстный членъ на знаменателя коэффиціента и полученное дѣлятъ на числителя.
Греческіе ученые занимались алгеброй въ періодъ времени съ VI ст. до Р. X. и кончая IV ст. по Р. X. Они разработали нѣсколько отдѣловъ ея, но ихъ труды идутъ въ иномъ направленіи, чѣмъ какого держится новѣйшая математика, именно они носятъ на себѣ геометрическую окраску.
Прежде всего Пиѳагоръ (въ VI ст. до Р. X.) и Платонъ (въ V ст.) рѣшили въ цѣлыхъ числахъ уравненіе х>2+y>2=z>2.
Пиѳагоръ далъ такія формулы:
гдѣ а равно любому нечетному числу; по Платону
гдѣ а любое четное число.
Діофантъ, жввшій въ Александріи въ 4 в. по Р. X., оказалъ алгебрѣ большія услуги. До него древніе не знали употребленія буквъ при доказательствахъ въ общемъ видѣ, Діофантъ же первый сталъ вводить различные знаки для неизвѣстныхъ величинъ, главнымъ образомъ греческія буквы; ему обязана своей разработкой глава объ уравненіяхъ, именно объ уравненіяхъ первой степени со многими неизвѣстными и о полныхъ квадратныхъ уравненіяхъ. Вотъ примѣръ изъ Діофанта:
x + y = 10, x>2 + y>2 = 68
дѣлимъ 1-е уравненіе на 2 и получаемъ
теперь положимъ, что
тогда
x = 5 + d, y = 5 − d (5 + d)>2 + (5 − d)>2 = 68 50 + 2d>2 = 68 d = 3, x = 8, y = 2
Діофантъ занимался также неопредѣленными уравненіями первой и второй степени, но ему не удалось найти полнаго ихъ рѣшенія въ цѣлыхъ числахъ; это сдѣлали уже Эйлеръ, нѣмецкій математикъ 18 в., и французскій математикъ Лагранжъ (1736—1813).
Индусы называли неизвѣстныя величины, которыя мы теперь обозначаемъ черезъ х, у, z и т. д., черной величиной, голубой, желтой, зеленой, красной и обозначали ихъ первыми буквами тѣхъ словъ, которыя выражаютъ эти цвѣта. Индусскіе математики 6—12 в по Р. X. знакомы были, правда, съ греческой ариѳметикой и алгеброй, но они далеко опередили грековъ. Они знали ирраціональныя числа, знали, что всякій квадратный корень имѣетъ два значенія: положительное и отрицательное, и дошли до мнимыхъ величинъ. Баскара (въ 12 в.) принялся за кубическія уравненія, и вотъ его примѣръ:
x>4 + 48x = 12x>2 + 72
вычтемъ по
12x>2 + 64 = 12x>2 + 64
————————————————————————
x>3 − 12x>2 + 48x − 64 = 8
(x − 4)>3 = 2>3
x − 4 = 2
x = 6
Вплоть до 18 вѣка индусскіе математики являлись учителями европейскихъ математиковъ и образцами для нихъ, и лишь Лагранжу и Эйлеру удалось двинуть науку далѣе и превзойти индусовъ.
Арабскіе ученые переняли отъ индусовъ начала алгебры и перенесли въ Европу, гдѣ ею занялись главнымъ образомъ итальянцы.
Лука-де-Бурго (въ 15 ст.) перешелъ къ уравненіямъ 4-й степени и рѣшалъ тѣ изъ нихъ, которыя приводятся къ квадратнымъ. Тарталья и Карданъ (въ 16 ст.) объяснили рѣшеніе кубическихъ уравненій, притомъ всякихъ безъ исключенія, а Людовикъ Феррари далъ общую формулу рѣшенія уравненій 4-й степени.
Віета (1540—1603) положилъ начало общей ариѳметикѣ тѣмъ, что сталъ обозначать буквами не только искомыя количества, но и данныя; до него же буквами обозначались только тѣ количества, которыя требавалось опредѣлить; по способу Віета извѣстныя величины въ уравненіяхъ обозначались согласными буквами латинскаго алфавита, а неизвѣстныя—гласными.
За Віетой слѣдовалъ англичанинъ Гарріотъ (1560—1621). Онъ нашелъ, что всякое уравненіе высшихъ степеней является произведеніемъ уравненій низшихъ степеней, что между коэффиціентами и корнями уравненія есть опредѣленная зависимость; онъ ввелъ знакъ неравенства и предложилъ писать буквенныхъ множителей рядомъ, безъ всякаго знака; но коэффиціентъ онъ отдѣляетъ отъ буквы точкой и степени обозначаетъ повтореніемъ количества, т. е. вмѣсто a
"Литературная газета" общественно-политический еженедельник Главный редактор "Литературной газеты" Поляков Юрий Михайлович http://www.lgz.ru/.
«Почему я собираюсь записать сейчас свои воспоминания о покойном Леониде Николаевиче Андрееве? Есть ли у меня такие воспоминания, которые стоило бы сообщать?Работали ли мы вместе с ним над чем-нибудь? – Никогда. Часто мы встречались? – Нет, очень редко. Были у нас значительные разговоры? – Был один, но этот разговор очень мало касался обоих нас и имел окончание трагикомическое, а пожалуй, и просто водевильное, так что о нем не хочется вспоминать…».
Деятельность «общественников» широко освещается прессой, но о многих фактах, скрытых от глаз широких кругов или оставшихся в тени, рассказывается впервые. Например, за что Леонид Рошаль объявил войну Минздраву или как игорная мафия угрожала Карену Шахназарову и Александру Калягину? Зачем Николай Сванидзе, рискуя жизнью, вел переговоры с разъяренными омоновцами и как российские наблюдатели повлияли на выборы Президента Украины?Новое развитие в книге получили такие громкие дела, как конфликт в Южном Бутове, трагедия рядового Андрея Сычева, движение в защиту алтайского водителя Олега Щербинского и другие.
Курская магнитная аномалия — величайший железорудный бассейн планеты. Заинтересованное внимание читателей привлекают и по-своему драматическая история КМА, и бурный размах строительства гигантского промышленного комплекса в сердце Российской Федерации.Писатель Георгий Кублицкий рассказывает о многих сторонах жизни и быта горняцких городов, о гигантских карьерах, где работают машины, рожденные научно-технической революцией, о делах и героях рудного бассейна.
Свободные раздумья на избранную тему, сатирические гротески, лирические зарисовки — эссе Нарайана широко разнообразят каноны жанра. Почти во всех эссе проявляется характерная черта сатирического дарования писателя — остро подмечая несообразности и пороки нашего времени, он умеет легким смещением акцентов и утрировкой доводить их до полного абсурда.