Как мы учимся. Почему мозг учится лучше, чем любая машина… пока - [12]

Шрифт
Интервал

данный цикл необходимо повторить тысячи, миллионы, даже миллиарды раз. Это и неудивительно: в пространстве с множеством регулируемых параметров поиски оптимальных настроек для каждой гайки и болта могут занять некоторое время.

Данный принцип постепенной коррекции ошибки был реализован уже в самых первых искусственных нейросетях, созданных в 1980-х годах. Достижения в области вычислительной техники позволили распространить эту идею на гигантские нейронные сети, включающие сотни миллионов регулируемых соединений. Эти глубокие нейросети состоят из последовательностей этапов, каждый из которых адаптируется к текущей задаче. Например, на цветной иллюстрации 4 представлена система GoogLeNet на основе архитектуры LeNet. Последняя была предложена Яном Лекуном и выиграла один из самых престижных международных конкурсов по распознаванию образов. Анализируя миллиарды изображений, система научилась распределять их на тысячи различных категорий: лица, пейзажи, лодки, автомобили, собаки, насекомые, цветы, дорожные знаки и так далее. Каждый уровень ее иерархии настроен на некий важный аспект реальности: например, нейроны низших уровней избирательно реагируют на линии и текстуры. Чем выше уровень, тем больше нейронов учится реагировать на сложные признаки: геометрические фигуры (круги, кривые, звезды), части объектов (карман брюк, ручку автомобильной двери, пару глаз) и даже целые объекты (здания, лица, пауков)>7.

Стараясь минимизировать ошибки, алгоритм градиентного спуска обнаружил, что эти формы лучше всего подходят для классификации образов. Однако, если бы та же самая сеть получала на входе отрывки из книг или нотные листы, она бы настроилась иначе и научилась распознавать буквы, ноты или любые другие фигуры, распространенные в новой среде. Например, на цветной иллюстрации 3 показано, как сеть такого типа самоорганизуется для распознавания тысяч рукописных цифр>8. На самом низком уровне данные смешаны: одни изображения внешне похожи, но представляют собой разные цифры (скажем, 3 и 8); другие, наоборот, выглядят по-разному, но в действительности обозначают одно и то же (цифру 8, например, каждый пишет по-своему – у кого-то верхний контур замкнут, у кого-то не замкнут и т.д.). На каждом этапе степень абстракции возрастает, пока все варианты одного и того же знака не будут сгруппированы вместе. Посредством процедуры сокращения ошибок искусственная сеть обнаруживает иерархию признаков, наиболее важных для распознавания рукописных цифр. Примечательно, что само по себе исправление ошибок позволяет обнаружить целый ряд подсказок, облегчающих решение поставленной задачи.

Концепция обучения путем обратного распространения ошибки лежит в основе многих современных компьютерных приложений. Это рабочая лошадка, благодаря которой смартфон умеет распознавать ваш голос, а умный автомобиль – «видеть» пешеходов и дорожные знаки. Весьма вероятно, что наш мозг тоже использует ту или иную ее версию. Впрочем, метод обратного распространения ошибки может принимать разные формы. За последние тридцать лет в области искусственного интеллекта достигнут невероятный прогресс; исследователи обнаружили множество приемов, облегчающих обучение. Ниже мы рассмотрим их более подробно – оказывается, они многое могут рассказать о нас самих и о том, как мы учимся.

Научение – это исследование пространства возможностей

Одна из проблем, связанных с описанной выше процедурой коррекции ошибок, заключается в том, что система может зациклиться на неоптимальных параметрах. Представьте мяч для гольфа, который всегда катится под уклон. Допустим, прямо сейчас он движется по склону холма. Если в какой-то момент он попадет в ямку или в углубление, то уже никогда не достигнет его подножия – низшей точки ландшафта, абсолютного оптимума. Нечто подобное может случиться и с алгоритмом градиентного спуска, который иногда застревает в точке «локального минимума». «Локальный минимум» – своеобразный колодец в пространстве параметров, ловушка, из которой нельзя выбраться. Как только это происходит, обучение останавливается, ибо все последующие изменения кажутся контрпродуктивными: любое из них лишь увеличивает частоту ошибок. Система чувствует, что научилась всему, чему могла, и слепо игнорирует настройки высшего уровня, хотя те могут находиться всего в нескольких шагах в пространстве параметров. Алгоритм градиентного спуска не «видит» их, ибо отказывается подняться наверх, чтобы опуститься еще ниже. Близорукий, он отваживается отойти только на небольшое расстояние от начальной точки, а потому может не заметить лучшие, но удаленные конфигурации.

Это кажется вам слишком абстрактным? Представим конкретную ситуацию: вы идете за покупками на рынок, где хотите купить продукты подешевле. Вы минуете первого продавца (цены у него явно завышены), обходите второго (у него слишком дорого) и, наконец, останавливаетесь около третьего. У третьего продавца товар гораздо дешевле, чем у двух предыдущих. Но кто поручится, что в конце прохода или, возможно, в соседнем городе цены не окажутся еще ниже? Иначе говоря, понятия «лучшая


Еще от автора Станислас Деан
Сознание и мозг

Станислас Деан сделал прорыв в понимании того, как наше сознание обустроено в нашем мозге и как, глядя на карту активности нейронов, «читать» мысли человека и «видеть» его образы. Станислас Деан вводит понятие «глобального нейронного рабочего пространства» и объясняет, каким образом нейроны, связываясь между собой, дают нам возможность осознавать этот мир, мыслить, чувствовать, мечтать. Это исследование дает новое понимание того, что значит находиться в сознании и без сознания, каким образом то, что мы не осознаем, побуждает нас действовать, как мозг решает, какие стимулы допустить до сознания, а какие нет. Станислас Деан опирается на потрясающие исследования, проведенные в ведущих лабораториях мира.


Рекомендуем почитать
Россия и Дон. История донского казачества 1549—1917

Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.


Император Алексей Ι Комнин и его стратегия

Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.