Изучаем Arduino: инструметы и методы технического волшебства - [8]

Шрифт
Интервал

2.2.1. Работа с макетной платой

Рассмотрим, что такое макетная плата и как эффективно использовать ее для проектов из этой книги. Макетная плата - удобный инструмент для экспериментов, позволяющий легко собирать простые схемы без изготовления печатных плат и пайки. С двух сторон по всей длине макетной платы расположены красные и синие

- 44 -

отверстия. Все красные отверстия соединены между собой и служат, как правило, для подачи питания. Для большинства проектов из этой книги это +5 В. Все синие отверстия тоже электрически соединены друг с другом и играют роль шины заземления. Каждые пять отверстий, расположенных вертикальными рядами, также соединены друг с другом. Посередине есть свободное место для удобства установки компонентов на макетной плате. Электрические соединения отверстий показаны на рис. 2.1 утолщенными линиями.

Шина питания Шина заземления (общая шина)

Шина питания Шина заземления (общая шина)

Область для установки элементов

Рис. 2.1. Электрические соединения макетной платы

2.3. Подсоединение светодиодов


Светодиоды почти наверняка будут одними из наиболее часто используемых деталей в проектах из данной книги. Подключая светодиоды, необходимо соблюдать правильную полярность. Положительный вывод светодиода называется анодом, отрицательный - катодом. Определить назначение контактов светодиода можно визуально: вывод катода короче, чем анода.

Ток через светодиод течет только в одном направлении: от анода к катоду. Поскольку ток протекает от положительного полюса к отрицательному, анод светодиода следует подключить к источнику тока (цифровой выход +5 В), а катод к земле. Резистор может быть подключен последовательно с любым из выводов светодиода. Полярность подключения для резисторов не важна.

- 45 -

Подключать светодиод к контакту 9 Arduino нужно последовательно с резистором, который выступает в качестве ограничителя тока. Чем больше сопротивление резистора, тем сильнее он ограничивает ток. В этом примере мы применим резистор номиналом 220 Ом. Монтажная схема изображена на рис. 2.2.

Рис. 2.2. Подключение светодиода к плате Arduino Uno

2.3.1. Закон Ома и формула для расчета мощности


Самая главная формула для любого инженера-электрика - это закон Ома, который определяет соотношение между напряжением (измеряется в вольтах), током (измеряется в амперах) и сопротивлением (измеряется в Омах) в цепи. Схема представляет собой замкнутый контур с источником электрической энергии ( например, батареей 9 В) и нагрузкой (чем-то, что расходует энергию, как светодиод). Прежде всего, важно понять физический смысл каждого термина:

• напряжение представляет собой разность электрических потенциалов между двумя точками;

• ток течет от точки с более высокой потенциальной энергией, чтобы снизить потенциальную энергию. Пользуясь аналогией, электрический ток можно предста

- 46 -

вить как поток воды, а напряжение - как высоту перепада. Вода (или ток) всегда течет из точки с большей высотой (более высокое напряжение) к точке с меньшей высотой (или более низкому напряжению). Ток, как вода в реке, всегда будет идти по пути наименьшего сопротивления в цепи;

• по аналогии сопротивление является отверстием для протекания тока. Когда вода (ток) течет через узкую трубу, за одинаковое количество времени проходит меньшее количество, чем через широкую трубу. Узкая труба эквивалентна большему сопротивлению, потому что вода будет течь медленнее. Широкая труба эквивалентна малому сопротивлению, потому что вода (ток) может течь быстрее.

Закон Ома определяется следующим образом:

U = I·R, где U - напряжение в вольтах; I - ток в амперах; R - сопротивление в омах.

В электрической цепи каждый компонент обладает некоторым сопротивлением, что снижает напряжение. Закон Ома очень удобен для подбора значения резистора, подкточаемого последовательно со светодиодом. Светодиоды характеризуются определенной величиной падения напряжения и заданным значением рабочего тока. Чем больше ток через светодиод (не превышая максимально допустимого), тем ярче он светится. Для наиболее распространенных светодиодов максимальный ток равен 20 мА. Типовое значение падения напряжения для светодиода составляет около 2 в.

Рассмотрим схему, изображенную на рис. 2.3, и применим закон Ома для подбора резистора R1.

Рис. 2.3. Схема включения светодиода

Предположим, что LED 1 - стандартный светодиод с прямым током 20 мА и падением напряжения 2 В. Напряжение питания 5 В должно перераспределиться между светодиодом и резистором. Поскольку доля светодиода составляет 2 В, оставшиеся 3 В должны быть приложены к резистору. Зная максимальное значение прямого тока через светодиод (20 мА), можно найти номинал резистора:

R = U/I= 3/0,02 = 150 Ом.

Таким образом, при сопротивлении резистора 150 Ом через него и светодиод протекает ток 20 мА. По мере увеличения сопротивления ток будет уменьшаться.

Резистор 220 Ом обеспечивает достаточную яркость свечения светодиода, к тому же этот номинал очень распространен.

Еще одно важное соотношение - формула для расчета мощности, которая показывает, сколько ватт рассеивается на каждом компоненте. Увеличение мощности рас